Featured Research

from universities, journals, and other organizations

Photonics: Graphene's flexible future

Date:
December 10, 2012
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Theoretical calculations show graphene’s potential for controlling nanoscale light propagation on a chip.

Plots showing that surface plasmons are more confined when propagating along on a monolayer of graphene (G) than they are along a thin film of gold (Au).
Credit: 2012 A*STAR Institute of High Performance Computing

Theoretical calculations show graphene's potential for controlling nanoscale light propagation on a chip.

Related Articles


Semiconductors have revolutionized computing because of their efficient control over the flow of electrical currents on a single chip, which has led to devices such as the transistor. Working towards a similar tunable functionality for light, researchers from the A*STAR Institute of High Performance Computing (IHPC), Singapore, have shown how graphene could be used to control light at the nanometer scale, advancing the concept of photonic circuits on chips1.

Graphene, which is made from a single layer of carbon atoms, has excellent electronic properties; some of these are also useful in photonic applications. Usually, only metals are able to confine light to the order of a few nanometers, which is much smaller than the wavelength of the light. At the surface of metals, collective oscillations of electrons, so-called 'surface plasmons', act as powerful antennae that confine light to very small spaces. Graphene, with its high electrical conductivity, shows similar behavior to metals so can also be used for plasmon-based applications, explains Choon How Gan of IHPC, who led the research.

Gan and co-workers studied theoretically and computationally how surface plasmons travel along sheets of graphene. Even though graphene is a poorer conductor than a metal, so plasmon propagation losses are higher, it has several key advantages, says team member Hong Son Chu. "The key advantage that makes graphene an excellent platform for plasmonic devices is its large tunability that cannot be seen in the usual noble metals," he explains. "This tunability can be achieved in different ways, using electric or magnetic fields, optical triggers and temperature."

The team's calculations indicated that surface plasmons propagating along a sheet of graphene would be much more confined to a small space than they would traveling along a gold surface (see image). However, the team also showed that surface plasmons would travel far better between two sheets of graphene brought into close contact. Furthermore, by adjusting design parameters such as the separation between the sheets, as well as their electrical conductivity, much better control over surface plasmon properties is possible.

In the future, Gan and his co-workers plan to investigate these properties for applications. "We will explore the potential of graphene plasmonic devices also for the terahertz and mid-infrared regime," he explains. "In this spectral range, graphene plasmonic structures could be promising for applications such as molecular sensing, as photodetectors, or for optical devices that can switch and modulate light."

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Choon How Gan, Hong Son Chu, Er Ping Li. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Physical Review B, 2012; 85 (12) DOI: 10.1103/PhysRevB.85.125431

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Photonics: Graphene's flexible future." ScienceDaily. ScienceDaily, 10 December 2012. <www.sciencedaily.com/releases/2012/12/121210080425.htm>.
The Agency for Science, Technology and Research (A*STAR). (2012, December 10). Photonics: Graphene's flexible future. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2012/12/121210080425.htm
The Agency for Science, Technology and Research (A*STAR). "Photonics: Graphene's flexible future." ScienceDaily. www.sciencedaily.com/releases/2012/12/121210080425.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Obama: Better Ways to Create Jobs Than Keystone Pipeline

Obama: Better Ways to Create Jobs Than Keystone Pipeline

AFP (Dec. 19, 2014) US President Barack Obama says that construction of the Keystone pipeline would have 'very little impact' on US gas prices and believes there are 'more direct ways' to create construction jobs. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins