Featured Research

from universities, journals, and other organizations

Photonics: Graphene's flexible future

Date:
December 10, 2012
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Theoretical calculations show graphene’s potential for controlling nanoscale light propagation on a chip.

Plots showing that surface plasmons are more confined when propagating along on a monolayer of graphene (G) than they are along a thin film of gold (Au).
Credit: © 2012 A*STAR Institute of High Performance Computing

Theoretical calculations show graphene's potential for controlling nanoscale light propagation on a chip.

Related Articles


Semiconductors have revolutionized computing because of their efficient control over the flow of electrical currents on a single chip, which has led to devices such as the transistor. Working towards a similar tunable functionality for light, researchers from the A*STAR Institute of High Performance Computing (IHPC), Singapore, have shown how graphene could be used to control light at the nanometer scale, advancing the concept of photonic circuits on chips1.

Graphene, which is made from a single layer of carbon atoms, has excellent electronic properties; some of these are also useful in photonic applications. Usually, only metals are able to confine light to the order of a few nanometers, which is much smaller than the wavelength of the light. At the surface of metals, collective oscillations of electrons, so-called 'surface plasmons', act as powerful antennae that confine light to very small spaces. Graphene, with its high electrical conductivity, shows similar behavior to metals so can also be used for plasmon-based applications, explains Choon How Gan of IHPC, who led the research.

Gan and co-workers studied theoretically and computationally how surface plasmons travel along sheets of graphene. Even though graphene is a poorer conductor than a metal, so plasmon propagation losses are higher, it has several key advantages, says team member Hong Son Chu. "The key advantage that makes graphene an excellent platform for plasmonic devices is its large tunability that cannot be seen in the usual noble metals," he explains. "This tunability can be achieved in different ways, using electric or magnetic fields, optical triggers and temperature."

The team's calculations indicated that surface plasmons propagating along a sheet of graphene would be much more confined to a small space than they would traveling along a gold surface (see image). However, the team also showed that surface plasmons would travel far better between two sheets of graphene brought into close contact. Furthermore, by adjusting design parameters such as the separation between the sheets, as well as their electrical conductivity, much better control over surface plasmon properties is possible.

In the future, Gan and his co-workers plan to investigate these properties for applications. "We will explore the potential of graphene plasmonic devices also for the terahertz and mid-infrared regime," he explains. "In this spectral range, graphene plasmonic structures could be promising for applications such as molecular sensing, as photodetectors, or for optical devices that can switch and modulate light."

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Choon How Gan, Hong Son Chu, Er Ping Li. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Physical Review B, 2012; 85 (12) DOI: 10.1103/PhysRevB.85.125431

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Photonics: Graphene's flexible future." ScienceDaily. ScienceDaily, 10 December 2012. <www.sciencedaily.com/releases/2012/12/121210080425.htm>.
The Agency for Science, Technology and Research (A*STAR). (2012, December 10). Photonics: Graphene's flexible future. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2012/12/121210080425.htm
The Agency for Science, Technology and Research (A*STAR). "Photonics: Graphene's flexible future." ScienceDaily. www.sciencedaily.com/releases/2012/12/121210080425.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Two Stunt Pilots Perform Incredibly Close Flyby

Two Stunt Pilots Perform Incredibly Close Flyby

Rumble (Jan. 29, 2015) — Two pilots from &apos;Escuadrilla Argentina de Acrobacia Aιrea&apos; perform an incredibly low altitude flyby stunt during a recent show exhibition in Argentina. Check it out! Video provided by Rumble
Powered by NewsLook.com
'Brand Blocker' Glasses Blur Ads in Real Time

'Brand Blocker' Glasses Blur Ads in Real Time

Buzz60 (Jan. 28, 2015) — A team of college students design and build a pair of goggles that will obscure any corporate branding from your field of vision. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
Amplifying Tiny Movements to Visualize the Invisible

Amplifying Tiny Movements to Visualize the Invisible

Reuters - Innovations Video Online (Jan. 28, 2015) — A new video recording method that amplifies seemingly invisible motion could lead to a touch-free vital signs monitor, and offer a new tool for engineers to gauge stresses on bridges and tunnels in real time. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Boeing's Profit Soars

Boeing's Profit Soars

Reuters - Business Video Online (Jan. 28, 2015) — Boeing delivered more commercial planes, especially 737s and 787s, fueling profit. But it issued a mixed outlook. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins