Featured Research

from universities, journals, and other organizations

Ancient red dye powers new 'green' battery: Chemists use plant extract in eco-friendly, sustainable lithium-ion battery

Date:
December 11, 2012
Source:
City College of New York
Summary:
Rose madder -- a natural plant dye once prized throughout the Old World to make fiery red textiles -- has found a second life as the basis for a new "green" battery. Chemists have developed a non-toxic and sustainable lithium-ion battery powered by purpurin, a dye extracted from the roots of the madder plant.

Madder root (Rubia sp.), green battery, and purpurin.
Credit: John/Vijai

Rose madder -- a natural plant dye once prized throughout the Old World to make fiery red textiles -- has found a second life as the basis for a new "green" battery.

Related Articles


Chemists from The City College of New York teamed with researchers from Rice University and the U.S. Army Research Laboratory to develop a non-toxic and sustainable lithium-ion battery powered by purpurin, a dye extracted from the roots of the madder plant (Rubia species).

More than 3,500 years ago, civilizations in Asia and the Middle East first boiled madder roots to color fabrics in vivid oranges, reds and pinks. In its latest technological incarnation, the climbing herb could lay the foundation for an eco-friendly alternative to traditional lithium-ion (Li-ion) batteries. These batteries charge everything from your mobile phone to electric vehicles, but carry with them risks to the environment during production, recycling and disposal.

"Purpurin," on the other hand, said team member and City College Professor of Chemistry George John, "comes from nature and it will go back to nature." The team reports their results in the journal Nature's online and open access publication, Scientific Reports, on December 11, 2012.

Most Li-ion batteries today rely on finite supplies of mined metal ores, such as cobalt. "Thirty percent of globally produced cobalt is fed into battery technology," noted Dr. Leela Reddy, lead author and a research scientist in Professor Pulickel Ajayan's lab in the Department of Mechanical Engineering and Materials Science at Rice University. The cobalt salt and lithium are combined at high temperatures to make a battery's cathode, the electrode through which the electric current flows.

Mining cobalt metal and transforming it, however, is expensive, Dr. Reddy explained. Fabricating and recycling standard Li-ion batteries demands high temperatures, guzzling costly energy, especially during recycling. "In 2010, almost 10 billion lithium-ion batteries had to be recycled," he said .

Production and recycling also pumps an estimated 72 kilograms of carbon dioxide -- a greenhouse gas -- into the atmosphere for every kilowatt-hour of energy in a Li-ion battery, he noted. These grim facts have fed a surging demand to develop green batteries, said Dr. Reddy.

Fortunately, biologically based color molecules, like purpurin and its relatives, seem pre-adapted to act as a battery's electrode. In the case of purpurin, the molecule's six-membered (aromatic) rings are festooned with carbonyl and hydroxyl groups adept at passing electrons back and forth, just as traditional electrodes do. "These aromatic systems are electron-rich molecules that easily coordinate with lithium," explained Professor John.

Moreover, growing madder or other biomass crops to make batteries would soak up carbon dioxide and eliminate the disposal problem -- without its toxic components, a lithium-ion battery could be thrown away.

Best of all, purpurin also turns out to be a no-fuss ingredient. "In the literature there are one or two other natural organic molecules in development for batteries, but the process to make them is much more tedious and complicated," noted Professor John.

Made and stored at room temperature, the purpurin electrode is made in just a few easy steps: dissolve the purpurin in an alcohol solvent and add lithium salt. When the salt's lithium ion binds with purpurin the solution turns from reddish yellow to pink. "The chemistry is quite simple," coauthor and City College postdoctoral researcher Dr. Subbiah Nagarajan explained.

The team estimates that a commercial green Li-ion battery may be only a few years away, counting the time needed to ramp up purpurin's efficiency or hunt down and synthesize similar molecules. "We can say it is definitely going to happen, and sometime soon, because in this case we are fully aware of the mechanism," said Professor John.

"When you can generate something new or unheard of, you think of chemistry in a different way," he added. "That a natural material or dye can be used for a battery, that is exciting, even for me."


Story Source:

The above story is based on materials provided by City College of New York. Note: Materials may be edited for content and length.


Journal Reference:

  1. Arava Leela Mohana Reddy, Subbiah Nagarajan, Porramate Chumyim, Sanketh R. Gowda, Padmanava Pradhan, Swapnil R. Jadhav, Madan Dubey, George John, Pulickel M. Ajayan. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes. Scientific Reports, 2012; 2 DOI: 10.1038/srep00960

Cite This Page:

City College of New York. "Ancient red dye powers new 'green' battery: Chemists use plant extract in eco-friendly, sustainable lithium-ion battery." ScienceDaily. ScienceDaily, 11 December 2012. <www.sciencedaily.com/releases/2012/12/121211145240.htm>.
City College of New York. (2012, December 11). Ancient red dye powers new 'green' battery: Chemists use plant extract in eco-friendly, sustainable lithium-ion battery. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2012/12/121211145240.htm
City College of New York. "Ancient red dye powers new 'green' battery: Chemists use plant extract in eco-friendly, sustainable lithium-ion battery." ScienceDaily. www.sciencedaily.com/releases/2012/12/121211145240.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
US Army Completes Ebola Treatment Unit

US Army Completes Ebola Treatment Unit

Reuters - US Online Video (Nov. 22, 2014) The US Army of engineers completes Ebola treatment center in Liberia. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins