Featured Research

from universities, journals, and other organizations

New immune therapy successfully treats brain tumors in mice

Date:
December 17, 2012
Source:
Duke University Medical Center
Summary:
Using an artificial protein that stimulates the body's natural immune system to fight cancer, a research team has engineered a lethal weapon that kills brain tumors in mice while sparing other tissue. If it can be shown to work in humans, it would overcome a major obstacle that has hampered the effectiveness of immune-based therapies.

Engineered to specifically link with the body’s immune fighters (T-cells) on one side, and a cancer cell on the other, the bispecific T-cell engager (BiTE) serves as a connector that tethers cancer to its killer.
Credit: Duke Medicine

Using an artificial protein that stimulates the body's natural immune system to fight cancer, a research team at Duke Medicine has engineered a lethal weapon that kills brain tumors in mice while sparing other tissue. If it can be shown to work in humans, it would overcome a major obstacle that has hampered the effectiveness of immune-based therapies.

Related Articles


The protein is manufactured with two arms -- one that exclusively binds to tumor cells and another that snags the body's fighter T-cells, spurring an attack on the tumor. In six out of eight mice with brain tumors, the treatment resulted in cures, according to findings published Dec. 17, 2012, in the Proceedings of the National Academy of Sciences.

"This work represents a revival of a somewhat old concept that targeting cancer with tumor-specific antigens may well be the most effective way to treat cancer without toxicity," said senior author John H. Sampson, M.D., PhD, a neurosurgeon at The Preston Robert Tisch Brain Tumor Center at Duke. "But there have been problems with that approach, especially for brain tumors. Our therapeutic agent is exciting, because it acts like Velcro to bind T-cells to tumor cells and induces them to kill without any negative effects on surrounding normal tissues."

Sampson and colleagues focused on the immune approach in brain tumors, which are notoriously difficult to treat. Despite surgery, radiation and chemotherapy, glioblastomas are universally fatal, with a median survival of 15 months.

Immunotherapies, in which the body's B-cells and T-cells are triggered to attack tumors, have shown promise in treating brain and other cancers, but have been problematic in clinical use. Treatments have been difficult to administer at therapeutic doses, or have spurred side effects in which the immune system also attacks healthy tissue and organs.

Working to overcome those pitfalls, the Duke-led researchers designed a kind of connector -- an artificial protein called a bispecific T-cell engager, or BiTE -- that tethers the tumor to its killer. Their newly engineered protein includes fractions of two separate antibodies, one that recruits and engages the body's fighter T-cells and one that expressly homes in on an antigen known as EGFRvIII, which only occurs in cancers.

Once connected via the new bispecific antibody, the T-cells recognize the tumor as an invader, and mount an attack. Normal tissue, which does not carry the tumor antigen, is left unscathed.

"One of the major advantages is that this therapy can be given intravenously, crossing the blood-brain barrier," said lead author Bryan Choi, a dual M.D-PhD candidate at Duke. "When we gave the therapy systemically to the mice, it successfully localized to the tumors, treating even bulky and invasive tumors in the central nervous system."

The team also developed an antidote to other current immune-targeting therapies that have a toxic effect, enhancing their safety profiles and bolstering their effectiveness.

"Additional studies will concentrate on whether these findings can be replicated in human trials, and whether the treatment is affected by the use of current therapies such as radiation and chemotherapy," Sampson said.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bryan D. Choi, Chien-Tsun Kuan, Mingqing Cai, Gary E. Archer, Duane A. Mitchell, Patrick C. Gedeon, Luis Sanchez-Perez, Ira Pastan, Darell D. Bigner, and John H. Sampson. Systemic administration of a bispecific antibody targeting EGFRvIII successfully treats intracerebral glioma. PNAS, December 17, 2012 DOI: 10.1073/pnas.1219817110

Cite This Page:

Duke University Medical Center. "New immune therapy successfully treats brain tumors in mice." ScienceDaily. ScienceDaily, 17 December 2012. <www.sciencedaily.com/releases/2012/12/121217152641.htm>.
Duke University Medical Center. (2012, December 17). New immune therapy successfully treats brain tumors in mice. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2012/12/121217152641.htm
Duke University Medical Center. "New immune therapy successfully treats brain tumors in mice." ScienceDaily. www.sciencedaily.com/releases/2012/12/121217152641.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) — It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) — More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins