Featured Research

from universities, journals, and other organizations

Silver sheds light on superconductor secrets

Date:
December 20, 2012
Source:
Springer Science+Business Media
Summary:
By doping a bismuth-based layered material with silver, Chinese scientists demonstrated that superconductivity is intrinsic to the new material rather than stemming from its impurities.

By doping a bismuth-based layered material with silver, Chinese scientists demonstrated that superconductivity is intrinsic to the new material rather than stemming from its impurities.

The first report on the chemical substitution, or doping, using silver atoms, for a new class of superconductor that was only discovered this year, is about to be published in EPJ B. Chinese scientists from Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, discovered that the superconductivity is intrinsic rather than created by impurities in this material with a sandwich-style layered structure made of bismuth oxysulphide (Bi4O4S3).

Superconductors with a transition temperature (TC) above the boiling temperature of liquid nitrogen (77 kelvins or −196 C) are called high TC superconductors. In the quest for such materials, compounds with bismuth disulphide (BiS2) layers have recently started to attract a lot of attention. Indeed, in July 2012, Japanese scientists reported achieving a TC at around 4.5 kelvins (-268.65 C) with the first bismuth oxysulphide superconductor.

All the superconducting samples for this new superconductor reported so far are a mixture of Bi4O4S3 and impurities. However, the pure sample without impurities is not superconducting. Scientists have therefore been wondering whether the observed superconductivity stems from the presence of impurities.

The Hefei team performed systematic measurement of the material's characteristics relying on x-ray diffraction, magnetic susceptibility, electrical transport and thermal transport. Using comparison of the x-ray diffraction patterns, they found that silver atoms partially replace the bismuth sites in the bismuth oxysulphide lattice.

Further experiments involved controlling the composition of the material through various levels of silver doping. The superconductivity, the authors found, was suppressed as the silver content increases and eventually disappears above a certain doping threshold. They believe that it is the modification of electronic structure upon doping that suppresses the superconductivity.

Based on these observations, they concluded that the observed superconductivity originates from the bismuth oxysulphide lattice rather than any impurities.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal References:

  1. S. G. Tan, P. Tong, Y. Liu, W. J. Lu, L. J. Li, B. C. Zhao, Y. P. Sun. Suppression of superconductivity in layered Bi4O4S3 by Ag doping. European Physical Journal B, 2012 DOI: 10.1140/epjb/e2012-30975-2
  2. Yoshikazu Mizuguchi, Hiroshi Fujihisa, Yoshito Gotoh, Katsuhiro Suzuki, Hidetomo Usui, Kazuhiko Kuroki, Satoshi Demura, Yoshihiko Takano, Hiroki Izawa, Osuke Miura. Novel BiS2-based layered superconductor Bi4O4S3. arXiv.org, 2012; [link]

Cite This Page:

Springer Science+Business Media. "Silver sheds light on superconductor secrets." ScienceDaily. ScienceDaily, 20 December 2012. <www.sciencedaily.com/releases/2012/12/121220080306.htm>.
Springer Science+Business Media. (2012, December 20). Silver sheds light on superconductor secrets. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2012/12/121220080306.htm
Springer Science+Business Media. "Silver sheds light on superconductor secrets." ScienceDaily. www.sciencedaily.com/releases/2012/12/121220080306.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins