Featured Research

from universities, journals, and other organizations

Biologists unlock 'black box' to underground world: How tiny microbes make life easier for humans

Date:
January 3, 2013
Source:
Brigham Young University
Summary:
Biologists have unlocked the "black box" to the underground world home to billions of microscopic creatures. That first peek inside may well explain how the number of species in an ecosystem changes the way it functions.

Professor Byron Adams and colleagues carry out experiments on Antarctic soils.
Credit: Image courtesy of Brigham Young University

A BYU biologist is part of a team of researchers that has unlocked the "black box" to the underground world home to billions of microscopic creatures.

That first peek inside, recently published in the Proceedings of the National Academy of Sciences, may well explain how the number of species in an ecosystem changes the way it functions.

"The organisms that live in soil do all kinds of important things for us -- they decompose and decontaminate our waste and toxic chemicals, purify our water, prevent erosion, renew fertility," said BYU biology professor Byron Adams, a study coauthor. "But we know very little about how they do this. What species need to be present? What are the different jobs that we need them to do?"

For their analysis, Adams and his colleagues took 16 soil samples from all reaches of the globe, from Antarctica to tropical forest locations, extracted the DNA out of all the organisms in each sample, and sequenced it.

With information about the genome (the complete set of its DNA and all of its genes) of each microbe in the soil, the researchers were able to see which organisms do what, and whether or not their functional roles are redundant or unique.

"People think you're going to pick up a handful of dirt anywhere in the world and you'll pretty much have the same bunch of microbes doing pretty much the same things," Adams said. "That's simply not true. They function very differently based on their environment. And when you have more species, you get more, and different functions."

Having several different species that do the same job might mean that if one species goes extinct then the others can pick up the slack. On the other hand, in ecosystems like deserts, where there are few species and even fewer jobs, removing some species could result in collapse, or failure of the ecosystem to provide the services we need.

Understanding the relationship between biodiversity and the different jobs that soil microbes do is a first step towards understanding how to better harness these organisms in order to prevent the collapse of the very systems that provide critical ecosystem services, such as fertile soil and clean water.

"The most obvious applications of this understanding will probably be in agricultural ecosystems," Adams said.

A better understanding of below-ground ecosystems can help humans predict how those systems will respond to things such as climate change or perturbations to the soil from mining, drilling or waste. And, hopefully, that understanding can help prevent agricultural or environmental catastrophes.

"We've been walking around on soil since the beginning of time and never really knew what was going on underneath us," Adams said. "Now we will be able to make predictions of how ecosystems function, what causes them to collapse, and perhaps even predict, where collapses will take place and how we can prevent them."

The lead author on the study was Noah Fierer, an associate professor of Ecology and Evolutionary Biology at the University of Colorado, Boulder.

The researchers' data also may have something to say about how new species form. For centuries it was thought that geographic barriers (like mountains, peninsulas, rivers and deserts) were the primary engines of speciation. However, it could be that interactions with other species are just as important.

The authors believe this study will open up significant additional research addressing speciation and the evolution of microbial communities.


Story Source:

The above story is based on materials provided by Brigham Young University. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. Fierer, J. W. Leff, B. J. Adams, U. N. Nielsen, S. T. Bates, C. L. Lauber, S. Owens, J. A. Gilbert, D. H. Wall, J. G. Caporaso. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, 2012; 109 (52): 21390 DOI: 10.1073/pnas.1215210110

Cite This Page:

Brigham Young University. "Biologists unlock 'black box' to underground world: How tiny microbes make life easier for humans." ScienceDaily. ScienceDaily, 3 January 2013. <www.sciencedaily.com/releases/2013/01/130103092030.htm>.
Brigham Young University. (2013, January 3). Biologists unlock 'black box' to underground world: How tiny microbes make life easier for humans. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2013/01/130103092030.htm
Brigham Young University. "Biologists unlock 'black box' to underground world: How tiny microbes make life easier for humans." ScienceDaily. www.sciencedaily.com/releases/2013/01/130103092030.htm (accessed April 20, 2014).

Share This



More Earth & Climate News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drought Concerns May Hurt Lake Tourism

Drought Concerns May Hurt Lake Tourism

AP (Apr. 18, 2014) Operators of recreational businesses on western reservoirs worry that ongoing drought concerns will keep boaters and other visitors from flocking to the popular summer attractions. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Ark. Man Finds 6-Carat Diamond At State Park

Ark. Man Finds 6-Carat Diamond At State Park

Newsy (Apr. 18, 2014) An Arkansas man has found a nearly 6.2-carat diamond, which he dubbed "The Limitless Diamond," at the Crater of Diamonds State Park. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins