Featured Research

from universities, journals, and other organizations

Engineered bacteria make fuel from sunlight

Date:
January 7, 2013
Source:
University of California - Davis
Summary:
Chemists have engineered blue-green algae to grow chemical precursors for fuels and plastics -- the first step in replacing fossil fuels as raw materials for the chemical industry.

Chemists have engineered blue-green algae to grow chemical precursors for fuels and plastics -- the first step in replacing fossil fuels as raw materials for the chemical industry.
Credit: © rangizzz / Fotolia

Chemists at the University of California, Davis, have engineered blue-green algae to grow chemical precursors for fuels and plastics -- the first step in replacing fossil fuels as raw materials for the chemical industry.

"Most chemical feedstocks come from petroleum and natural gas, and we need other sources," said Shota Atsumi, assistant professor of chemistry at UC Davis and lead author on the study published Jan. 7 in the Proceedings of the National Academy of Sciences.

The U.S. Department of Energy has set a goal of obtaining a quarter of industrial chemicals from biological processes by 2025.

Biological reactions are good at forming carbon-carbon bonds, using carbon dioxide as a raw material for reactions powered by sunlight. It's called photosynthesis, and cyanobacteria, also known as "blue-green algae," have been doing it for more than 3 billion years.

Using cyanobacteria to grow chemicals has other advantages: they do not compete with food needs, like corn's role in the creation of ethanol.

The challenge is to get the cyanobacteria to make significant amounts of chemicals that can be readily converted to chemical feedstocks. With support from Japanese chemical manufacturer Asahi Kasei Corp., Atsumi's lab at UC Davis has been working on introducing new chemical pathways into the cyanobacteria.

The researchers identified enzymes from online databases that carried out the reactions they were looking for, and then introduced the DNA for these enzymes into the cells. Working a step at a time, they built up a three-step pathway that allows the cyanobacteria to convert carbon dioxide into 2,3 butanediol, a chemical that can be used to make paint, solvents, plastics and fuels.

Because enzymes may work differently in different organisms, it is nearly impossible to predict how well the pathway will work before testing it in an experiment, Atsumi said.

After three weeks growth, the cyanobacteria yielded 2.4 grams of 2,3 butanediol per liter of growth medium -- the highest productivity yet achieved for chemicals grown by cyanobacteria and with potential for commercial development, Atsumi said.

Atsumi hopes to tune the system to increase productivity further and experiment with other products, while corporate partners explore scaling up the technology.

Coauthors on the paper are graduate student John Oliver, postdoctoral researcher Iara Machado sand Hisanari Yoneda, a visiting researcher from Asahi Kasei Corp.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Journal Reference:

  1. John W. K. Oliver, Iara M. P. Machado, Hisanari Yoneda, and Shota Atsumi. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1213024110

Cite This Page:

University of California - Davis. "Engineered bacteria make fuel from sunlight." ScienceDaily. ScienceDaily, 7 January 2013. <www.sciencedaily.com/releases/2013/01/130107171707.htm>.
University of California - Davis. (2013, January 7). Engineered bacteria make fuel from sunlight. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2013/01/130107171707.htm
University of California - Davis. "Engineered bacteria make fuel from sunlight." ScienceDaily. www.sciencedaily.com/releases/2013/01/130107171707.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins