Featured Research

from universities, journals, and other organizations

Sniffing immune cells: Immune cells on the move are guided by touch and smell

Date:
January 17, 2013
Source:
Institute of Science and Technology Austria
Summary:
A new article provides new insights into how immune cells find their way through tissues. The findings provide the first evidence for directed cell migration along concentration gradients of chemical cues immobilized in tissues, a concept that has long been assumed but never experimentally proven.

Microscopic image of blood vessels, lymphatic vessels and Chemokin CCL21.
Credit: Image courtesy of Institute of Science and Technology Austria

Research at IST Austria shows how immune cells navigate through the skin by sensing graded patterns of immobilized directional cues.

Related Articles


A research paper by the group of Michael Sixt, Assistant Professor at the Institute of Science and Technology Austria (IST Austria), published January 17 in Science provides new insights into how immune cells find their way through tissues. The findings provide the first evidence for directed cell migration along concentration gradients of chemical cues immobilized in tissues, a concept that has long been assumed but never experimentally proven.

Immune cells constantly patrol our body to check for foreign invaders, such as bacteria or viruses. To do so they leave the blood stream, actively crawl through tissues and finally re-enter the circulation via lymphatic vessels. Research from the laboratory of Michael Sixt elucidates how the cells are guided through tissues like the skin.

It is thought that cells either sense their environment by 'touching' or ´smelling´: They adhere to structural molecules like connective tissue proteins using adhesion receptors. Or they 'smell' soluble signal molecules with specialized surface receptors. Especially solutes are thought to act as directional cues as they tend to be more concentrated closer to the production source. Like one can find a flower by following its scent, cells are able to follow such soluble gradients. Both principles, touching and smelling, have been demonstrated to work in cell culture experiments. But how cell guidance functions in real tissues is still not known.

According to the new study, immune cells in mouse skin use a mixed strategy. They follow gradients of guidance cues, which are not soluble but immobilized to sugar molecules in the connective tissue. In their newly published work, the scientists around Michael Sixt visualized both the immune cells, in this case dendritic cells, and the cue, the chemokine CCL21, and recorded movies of how the cells navigate through living tissues. The researchers found that the chemokine is exclusively produced by the lymphatic vessel. From there it distributes into the surrounding tissue, forming a concentration gradient.

In collaboration with Robert Hauschild and Tobias Bollenbach, two physicists at IST Austria, detailed quantitative maps of the chemokine distribution were drawn and compared with the migratory routes of the cells. Observation and quantitative prediction matched well: a cell can find the next lymphatic vessel by comparing the concentration of chemokine across its surface and then crawling towards the higher concentration. For this to work the cell only needs to be of a certain size because the gradients are noisy. A small cell would easily get trapped on a local concentration peak as it cannot "see" that there is an even higher peak nearby. To prove their concept, the scientists outcompeted the chemokine gradients in the tissue by applying excess chemokine from the outside. They found that this confuses the cells on their way to the lymphatic vessel. When they released the anchoring of the chemokine to the tissue, cells also got confused, demonstrating that the gradients are not soluble but bound to the tissue.


Story Source:

The above story is based on materials provided by Institute of Science and Technology Austria. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Weber, R. Hauschild, J. Schwarz, C. Moussion, I. de Vries, D. F. Legler, S. A. Luther, T. Bollenbach, M. Sixt. Interstitial Dendritic Cell Guidance by Haptotactic Chemokine Gradients. Science, 2013; 339 (6117): 328 DOI: 10.1126/science.1228456

Cite This Page:

Institute of Science and Technology Austria. "Sniffing immune cells: Immune cells on the move are guided by touch and smell." ScienceDaily. ScienceDaily, 17 January 2013. <www.sciencedaily.com/releases/2013/01/130117142512.htm>.
Institute of Science and Technology Austria. (2013, January 17). Sniffing immune cells: Immune cells on the move are guided by touch and smell. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/01/130117142512.htm
Institute of Science and Technology Austria. "Sniffing immune cells: Immune cells on the move are guided by touch and smell." ScienceDaily. www.sciencedaily.com/releases/2013/01/130117142512.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins