Featured Research

from universities, journals, and other organizations

Ecological engineering solves unsafe water problems in Bolivia

Date:
January 30, 2013
Source:
University of Oklahoma
Summary:
Surrounded by mining, the mountainous region of Potosi, Bolivia is plagued by extensive environmental contamination from past and current mining operations. Researchers have discovered a technique to remove pollutants from water that requires minimal labor costs and is powered by nature itself.

Researchers engineering an ecosystem to treat polluted water in Potosi, Bolivia.
Credit: OU WaTER Center

Surrounded by mining, the mountainous region of Potosi, Bolivia is plagued by extensive environmental contamination from past and current mining operations. One mountain alone annually discharges an estimated 161 tons of zinc, 157 tons of iron and more than two tons of arsenic in addition to dozens of other toxic minerals, including cadmium and lead, through its water.

Related Articles


Researchers from the University of Oklahoma have discovered a technique to remove pollutants from water that requires minimal labor costs and is powered by nature itself. After 15 years of testing, research has shown this passive water treatment method to be successful in as diverse geography as the flatlands of Oklahoma and the mountains of Bolivia.

The passive water treatment system is created by engineering an ecosystem consisting of a series of filtering ponds. As the water moves through each specifically designed pond, a natural chemical or biological process removes certain contaminants as it slowly moves from one cell into the other before being re-released into natural waterways.

"When the water reaches the last pond, it has gone from looking like orange, sediment-laden sludge to clear water," said Robert Nairn, associate director for OU's Water Technologies for Emerging Regions Center and director of the Center for Restoration of Ecosystems and Watersheds.

The ecological filtering system requires less fossil fuel input and produces less pollution than traditional energy intensive water filtration technologies.

"Since it is powered by the sun, wind and gravity, it requires minimal labor cost and only needs to be checked about once every three months," said Nairn.

The passive water treatment system captures contaminated water from the mines, which flows through the series of constructed ponds for treatment.

"The region gets less than 17 inches of rain per year," Nairn said. "Much of the limited water is used for irrigation of staple root crops by the local farmers, resulting in contaminated soils and crops, posing substantial health risks."

Building upon their experience in the Tar Creek, Okla., Superfund site, the researchers are engineering an ecosystem to treat polluted water in Potosi. The difference between the Tar Creek project and Potosi project is the extreme geographical conditions. Instead of Oklahoma flatlands, the team is working in a desert at 16,000 feet, which poses new challenges.

"Massive water pollution is an issue that affects us all," Nairn said. "If left untreated, the results are the same: unsafe living conditions and potential health risks. We learn from research in both developed and undeveloped countries to counteract this man-made threat with ecologically friendly solutions."

This and similar research will be presented at the third International WaTER Conference Sept. 23 through 25 in Norman, Okla. Hosted by OU, the conference brings the world's leading water experts together to discuss the latest research and efforts to solve water and sanitation challenges for developing countries. Attendees will include international water and sanitation experts from academia, industry, non-governmental organizations, government and foundations. Sanitation development activist Ada Oko-Williams will formally receive the OU International Water Prize and give the plenary lecture.

For more information about Nairn and his research on mining watersheds, visit crew.ou.edu. To learn more about the International WaTER Conference, visit water.ou.edu.


Story Source:

The above story is based on materials provided by University of Oklahoma. Note: Materials may be edited for content and length.


Cite This Page:

University of Oklahoma. "Ecological engineering solves unsafe water problems in Bolivia." ScienceDaily. ScienceDaily, 30 January 2013. <www.sciencedaily.com/releases/2013/01/130130082250.htm>.
University of Oklahoma. (2013, January 30). Ecological engineering solves unsafe water problems in Bolivia. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2013/01/130130082250.htm
University of Oklahoma. "Ecological engineering solves unsafe water problems in Bolivia." ScienceDaily. www.sciencedaily.com/releases/2013/01/130130082250.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Scientists Say Earliest Snakes Lived Alongside The Dinosaurs

Newsy (Jan. 28, 2015) Wrongly categorized as lizard fossils, snake fossils now show the reptile could have developed earlier than we thought — 70 million years earlier. Video provided by Newsy
Powered by NewsLook.com
Time Lapse: Sculptures Created from 30 Tons of Snow

Time Lapse: Sculptures Created from 30 Tons of Snow

Rumble (Jan. 28, 2015) Students in North Finland use 30 tons of snow and one ton of ice to build a massive photography display and sculpture installation. Five days of work condensed into a one-minute time lapse! Video provided by Rumble
Powered by NewsLook.com
Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

Aquaponics Turn Suburban Industrial Park Into Farmland: Hume

The Toronto Star (Jan. 27, 2015) Ancient techniques of growing greens with fish and water are well ahead of Toronto bylaws. Video provided by The Toronto Star
Powered by NewsLook.com
Madagascar Locust Plague Could Mean Famine For Millions

Madagascar Locust Plague Could Mean Famine For Millions

Newsy (Jan. 27, 2015) The Food and Agriculture Organization says millions could face famine in Madagascar without more funding to finish locust eradication efforts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins