Featured Research

from universities, journals, and other organizations

Climate change clues from tiny marine algae -- ancient and modern

Date:
February 4, 2013
Source:
National Oceanography Centre
Summary:
Microscopic ocean algae called coccolithophores are providing clues about the impact of climate change both now and many millions of years ago. The study found that their response to environmental change varies between species, in terms of how quickly they grow.

Fossil and modern coccolithophore cells of species Toweius pertusus and Coccolithus pelagicus.
Credit: Courtesy of Paul Bown, UCL

Microscopic ocean algae called coccolithophores are providing clues about the impact of climate change both now and many millions of years ago. The study found that their response to environmental change varies between species, in terms of how quickly they grow.

Related Articles


Coccolithophores, a type of plankton, are not only widespread in the modern ocean but they are also prolific in the fossil record because their tiny calcium carbonate shells are preserved on the seafloor after death -- the vast chalk cliffs of Dover, for example, are almost entirely made of fossilised coccolithophores.

The fate of coccolithophores under changing environmental conditions is of interest because of their important role in the marine ecosystem and carbon cycle. Because of their calcite shells, these organisms are potentially sensitive to ocean acidification, which occurs when rising atmospheric carbon dioxide (CO2) is absorbed by the ocean, increasing its acidity.

There are many different species of coccolithophore and in an article, published in Nature Geoscience this week, the scientists report that they responded in different ways to a rapid climate warming event that occurred 56 million years ago, the Palaeocene-Eocene Thermal Maximum (PETM).

The study, involving researchers from the University of Southampton, the National Oceanography Centre and University College London, found that the species Toweius pertusus continued to reproduce relatively quickly despite rapidly changing environmental conditions. This would have provided a competitive advantage and is perhaps why closely-related modern-day species considered to be its descendants, (such as Emiliana huxleyi) still thrive today.

In contrast, the species Coccolithus pelagicus grew more slowly during the period of greatest warmth and this inability to maintain high growth rates may explain why its descendants are less abundant and less widespread in the modern ocean.

"This work provides us with a whole new way of looking at living and fossil coccolithophores," said lead author Dr Samantha Gibbs, Senior Research Fellow at University of Southampton Ocean and Earth Science.

By comparing immaculately preserved and complete fossil cells with modern coccolithophore cells, the researchers could interpret how different species responded to the sudden increase in environmental change at the PETM, when atmospheric CO2 levels increased rapidly and the oceans became more acidic.

"We use knowledge of how coccolithophores build their calcite skeletons in the modern ocean to interpret how climate change 56 million years ago affected the growth of these microscopic plankton," said co-author Dr Alex Poulton, a Research Fellow at the National Oceanography Centre.

"This is a significant step forward and allows us to view fossils as cells rather than dead 'rocks'. Through this we can begin to understand the environmental controls on oceanic calcification, as well as the potential effects of climate change and ocean acidification."

The study was primarily supported by the UK Ocean Acidification Research Programme, which is jointly funded by the Natural Environment Research Council (NERC), the Department of Environment, Food and Rural Affairs (Defra) and the Department of Energy and Climate Change (DECC).


Story Source:

The above story is based on materials provided by National Oceanography Centre. Note: Materials may be edited for content and length.


Journal Reference:

  1. Samantha J. Gibbs, Alex J. Poulton, Paul R. Bown, Chris J. Daniels, Jason Hopkins, Jeremy R. Young, Heather L. Jones, Geoff J. Thiemann, Sarah A. O’Dea, Cherry Newsam. Species-specific growth response of coccolithophores to Palaeocene–Eocene environmental change. Nature Geoscience, 2013; DOI: 10.1038/ngeo1719

Cite This Page:

National Oceanography Centre. "Climate change clues from tiny marine algae -- ancient and modern." ScienceDaily. ScienceDaily, 4 February 2013. <www.sciencedaily.com/releases/2013/02/130204094558.htm>.
National Oceanography Centre. (2013, February 4). Climate change clues from tiny marine algae -- ancient and modern. ScienceDaily. Retrieved March 1, 2015 from www.sciencedaily.com/releases/2013/02/130204094558.htm
National Oceanography Centre. "Climate change clues from tiny marine algae -- ancient and modern." ScienceDaily. www.sciencedaily.com/releases/2013/02/130204094558.htm (accessed March 1, 2015).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, March 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Whale-Watching Scientists Spot Baby Orca

Whale-Watching Scientists Spot Baby Orca

AP (Feb. 28, 2015) Researchers following endangered killer whales spotted a baby orca off the coast of Washington state, the third birth documented this winter but still leaving the population dangerously low. (Feb. 28) Video provided by AP
Powered by NewsLook.com
Bridge Collapses Due to Flooding in Bolivia

Bridge Collapses Due to Flooding in Bolivia

Reuters - News Video Online (Feb. 28, 2015) Heavy rain and flooding sweep through parts of Bolivia causing damage and leaves more than 2,000 people homeless. Sophia Soo reports. Video provided by Reuters
Powered by NewsLook.com
Death Toll from Afghan Avalanches Tops 200

Death Toll from Afghan Avalanches Tops 200

AFP (Feb. 27, 2015) More than 200 people have been killed in a series of avalanches triggered by heavy snowfall in Afghanistan. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
France, Philippines Call for Agreement on Climate Change

France, Philippines Call for Agreement on Climate Change

Reuters - News Video Online (Feb. 27, 2015) The presidents of France and the Philippines issue a joint appeal for a binding agreement on climate change. Katie Sargent reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins