Featured Research

from universities, journals, and other organizations

Tiny capsule effectively kills cancer cells

Date:
February 6, 2013
Source:
University of California - Los Angeles
Summary:
Devising a method for more precise and less invasive treatment of cancer tumors, scientists have developed a degradable nanoscale shell to carry proteins to cancer cells and stunt the growth of tumors without damaging healthy cells.

A diagram of the synthesis of degradable nanocapsules into cell nuclei to induce apoptosis, or programmed cell death, in cancer cells. The nanocapsules degrade harmlessly in normal cells.
Credit: Courtesy of UCLA Engineering

A tiny capsule invented at a UCLA lab could go a long way toward improving cancer treatment.

Related Articles


Devising a method for more precise and less invasive treatment of cancer tumors, a team led by researchers from the UCLA Henry Samueli School of Engineering and Applied Science has developed a degradable nanoscale shell to carry proteins to cancer cells and stunt the growth of tumors without damaging healthy cells.

In a new study, published online Feb. 1 in the peer-reviewed journal Nano Today, a group led by Yi Tang, a professor of chemical and biomolecular engineering and a member of the California NanoSystems Institute at UCLA, reports developing tiny shells composed of a water-soluble polymer that safely deliver a protein complex to the nucleus of cancer cells to induce their death. The shells, which at about 100 nanometers are roughly half the size of the smallest bacterium, degrade harmlessly in non-cancerous cells.

The process does not present the risk of genetic mutation posed by gene therapies for cancer, or the risk to healthy cells caused by chemotherapy, which does not effectively discriminate between healthy and cancerous cells, Tang said.

"This approach is potentially a new way to treat cancer," said Tang. "It is a difficult problem to deliver the protein if we don't use this vehicle. This is a unique way to treat cancer cells and leave healthy cells untouched."

The cell-destroying material, apoptin, is a protein complex derived from an anemia virus in birds. This protein cargo accumulates in the nucleus of cancer cells and signals to the cell to undergo programmed self-destruction.

The polymer shells are developed under mild physiological conditions so as not to alter the chemical structure of the proteins or cause them to clump, preserving their effectiveness on the cancer cells.

Tests done on human breast cancer cell lines in laboratory mice showed significant reduction in tumor growth.

"Delivering a large protein complex such as apoptin to the innermost compartment of tumor cells was a challenge, but the reversible polymer encapsulation strategy was very effective in protecting and escorting the cargo in its functional form," said Muxun Zhao, lead author of the research and a graduate student in chemical and biomolecular engineering at UCLA.

Tang's group continues to research ways of more precisely targeting tumors, prolonging the circulation time of the capsules and delivering other highly sought-after proteins to cancer cells.

The research team also included former UCLA Engineering student Zhen Gu, now an assistant professor in the joint biomedical engineering department at the University of North Carolina at Chapel Hill and North Carolina State University, and University of Southern California researchers including graduate student Biliang Hu, postdoctoral scholar Kye-Il Joo and associate professor Pin Wang.


Story Source:

The above story is based on materials provided by University of California - Los Angeles. The original article was written by Bill Kisliuk. Note: Materials may be edited for content and length.


Journal Reference:

  1. Muxun Zhao, Biliang Hu, Zhen Gu, Kye-Il Joo, Pin Wang, Yi Tang. Degradable polymeric nanocapsule for efficient intracellular delivery of a high molecular weight tumor-selective protein complex. Nano Today, 2013; DOI: 10.1016/j.nantod.2012.12.003

Cite This Page:

University of California - Los Angeles. "Tiny capsule effectively kills cancer cells." ScienceDaily. ScienceDaily, 6 February 2013. <www.sciencedaily.com/releases/2013/02/130206141649.htm>.
University of California - Los Angeles. (2013, February 6). Tiny capsule effectively kills cancer cells. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/02/130206141649.htm
University of California - Los Angeles. "Tiny capsule effectively kills cancer cells." ScienceDaily. www.sciencedaily.com/releases/2013/02/130206141649.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins