Featured Research

from universities, journals, and other organizations

Scientists solve mercury mystery, taking big step toward protecting human health

Date:
February 7, 2013
Source:
DOE/Oak Ridge National Laboratory
Summary:
By identifying two genes required for transforming inorganic into organic mercury, which is far more toxic, scientists have just taken a significant step toward protecting human health.

Mercury pouring from a pipette. By identifying two genes required for transforming inorganic into organic mercury, which is far more toxic, scientists have just taken a significant step toward protecting human health.
Credit: © marcel / Fotolia

By identifying two genes required for transforming inorganic into organic mercury, which is far more toxic, scientists have just taken a significant step toward protecting human health.

The question of how methylmercury, an organic form of mercury, is produced by natural processes in the environment has stumped scientists for decades, but a team led by researchers at Oak Ridge National Laboratory has solved the puzzle. Results of the study, published in the journal Science, provide the genetic basis for this process, known as microbial mercury methylation, and have far-reaching implications.

"Until now, we did not know how the bacteria convert mercury from natural and industrial processes into methylmercury," said ORNL's Liyuan Liang, a co-author and leader of a large Department of Energy-funded mercury research program that includes researchers from the University of Missouri-Columbia and University of Tennessee.

"This newly gained knowledge will allow scientists to study proteins responsible for the conversion process and learn what controls the activity," said Liang, adding that it may lead to ways of limiting methylmercury production in the environment.

For some 40 years scientists have known that when mercury is released into the environment certain bacteria can transform it into highly toxic methylmercury. Exactly how bacteria make this happen has eluded scientists. The challenge was to find proteins that can transfer a certain type of methyl group and to identify the genes responsible for their production.

Ultimately, by combining chemical principles and genome sequences, the team identified two genes, which they named hgcA and hgcB. Researchers experimentally deleted these genes one at a time from two strains of bacteria, which caused the resulting mutants to lose the ability to produce methylmercury. Reinserting these genes restored that capability, thus verifying the discovery.

The researchers found that this two-gene cluster is present in all known mercury-methylating bacteria, and they predicted that more than 50 other microorganisms may methylate mercury because they have a pair of similar genes.

Another key to the development was the collection of talent assembled to work on this problem.

"This discovery was made possible by our diverse team, which includes scientists with expertise in chemistry, computational biology, microbiology, neutron science, biochemistry and bacterial genetics," said Liang, who rated this paper as one of the most satisfying of her career.

Mercury is a toxin that spreads around the globe mainly through the burning of coal, industrial use and through natural processes such as volcanic eruptions. The chemical element bioaccumulates in aquatic food chains, especially in large fish. Various forms of mercury are widely found in sediments and water.

In a report just released by the United Nations Environmental Programme, Achiim Steiner, United Nations under-secretary general and executive director of UNEP, notes that "mercury remains a major global, regional and national challenge in terms of threats to human health and the environment."


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jerry M. Parks, Alexander Johs, Mircea Podar, Romain Bridou, Richard A. Hurt, Steven D. Smith, Stephen J. Tomanicek, Yun Qian, Steven D. Brown, Craig C. Brandt, Anthony V. Palumbo, Jeremy C. Smith, Judy D. Wall, Dwayne A. Elias, and Liyuan Liang. The Genetic Basis for Bacterial Mercury Methylation. Science, 7 February 2013 DOI: 10.1126/science.1230667

Cite This Page:

DOE/Oak Ridge National Laboratory. "Scientists solve mercury mystery, taking big step toward protecting human health." ScienceDaily. ScienceDaily, 7 February 2013. <www.sciencedaily.com/releases/2013/02/130207141450.htm>.
DOE/Oak Ridge National Laboratory. (2013, February 7). Scientists solve mercury mystery, taking big step toward protecting human health. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/02/130207141450.htm
DOE/Oak Ridge National Laboratory. "Scientists solve mercury mystery, taking big step toward protecting human health." ScienceDaily. www.sciencedaily.com/releases/2013/02/130207141450.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins