Featured Research

from universities, journals, and other organizations

Can simple measures of labile soil organic matter predict corn performance?

Date:
February 11, 2013
Source:
American Society of Agronomy
Summary:
Researchers are characterizing simple, cheap measurements of labile soil organic matter that could predict the performance of corn crops and help farmers optimize their cropping systems.

Organic matter is important for soil health and crop productivity. While an indicator of soil quality, a lot of organic matter is in extremely stable forms, and the nutrients in such forms are difficult for plants to use. The active, labile fraction, however, is a modest but important part of the organic matter.

"The labile fraction is small -- usually less than 20 or even 10 percent, depending on how you define it," explains Steve Culman, lead author of a study published online Feb. 8 in Agronomy Journal. "But it is where a lot of the action happens. It's where soil nutrients are rapidly cycled and are interacting with microbial communities."

The size of the labile pool, then, can be an important predictor of corn agronomic performance. But the tests used up to this point to measure those pools, such as microbial biomass and particulate organic matter, were labor intensive and expensive. Culman, in Sieg Snapp's lab at the W.K. Kellogg Biological Station, decided to use other measurements of the labile fractions -- including nitrogen mineralization and carbon mineralization -- to see what information these inexpensive tests might give them. Their results suggest that simple measures of labile organic matter can reflect long-term management and short-term seasonal changes as well as predict corn performance.

To better understand labile soil organic measurements and what they could tell farmers, the researchers measured soils managed in a variety of conditions. Fields were maintained with three different management practices (conventional, integrated, and compost) and two different crop rotations (continuous corn with no cover crops and corn-soybean-wheat with cover crops). After collecting soil from the different fields, the scientists then measured carbon and nitrogen mineralization.

"What's nice about carbon and nitrogen mineralization is they're based on actual biological activity," says Culman. "You take into account the soil microbes and environment for these tests."

A long-term cropping system trial provided the perfect opportunity to test the extent to which carbon and nitrogen mineralization measurements were affected by both management practice and crop rotation. These tests, then, could be used to identify the best practices, such as fertilizer application, for a given field. This would be especially useful for nitrogen -- a nutrient that is incredibly important for crop growth but is rarely measured by farmers.

"Most farmers don't test their soils for nitrogen," explains Culman. "They just basically apply a rate based on their yield goals, and excess nitrogen may be applied. The long-term goal would be to offer these as predictive tests for farmers so they can say, 'Given my soil type, management, and these measures, I should apply this amount of nitrogen.' That's the ultimate goal."

The predictive power of such tests for best management practices goes hand-in-hand with crop performance. The researchers also found that carbon mineralization was a better predictor of corn agronomic performance than other measures that are currently used (pre-sidress nitrate test and leaf chlorophyll). With these tests, Culman and his coauthors hope to provide farmers with better tools to manage their fields and increase crop yields.

Says Culman, "This could have tremendous impacts, locally, regionally, and nationally, in terms of having tools that better predict our cropping system performance based on soil properties."


Story Source:

The above story is based on materials provided by American Society of Agronomy. Note: Materials may be edited for content and length.


Journal Reference:

  1. Steve W. Culman, Sieglinde S. Snapp, John M. Green, Lowell E. Gentry. Short- and Long-Term Labile Soil Carbon and Nitrogen Dynamics Reflect Management and Predict Corn Agronomic Performance. Agronomy Journal, 2013; 0 (0): 0 DOI: 10.2134/agronj2012.0382

Cite This Page:

American Society of Agronomy. "Can simple measures of labile soil organic matter predict corn performance?." ScienceDaily. ScienceDaily, 11 February 2013. <www.sciencedaily.com/releases/2013/02/130211102312.htm>.
American Society of Agronomy. (2013, February 11). Can simple measures of labile soil organic matter predict corn performance?. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2013/02/130211102312.htm
American Society of Agronomy. "Can simple measures of labile soil organic matter predict corn performance?." ScienceDaily. www.sciencedaily.com/releases/2013/02/130211102312.htm (accessed August 27, 2014).

Share This




More Plants & Animals News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Firefighters Rescue Puppy Stuck in Tire

Raw: Firefighters Rescue Puppy Stuck in Tire

AP (Aug. 26, 2014) It took Houston firefighters more than an hour to free a puppy who got its head stuck in a tire. (Aug. 26) Video provided by AP
Powered by NewsLook.com
Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Newsy (Aug. 26, 2014) A study published in the journal "Neurology" interviewed more than 19,000 people and found 15 percent suffer from being "sleep drunk." Video provided by Newsy
Powered by NewsLook.com
Great White Shark Spotted Off Massachusetts Coast

Great White Shark Spotted Off Massachusetts Coast

Reuters - US Online Video (Aug. 26, 2014) A great white shark is spotted off the shore at Duxbury beach in Massachusetts forcing beach goers out of the water. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Raw: Elk Wanders Into German Office Building

Raw: Elk Wanders Into German Office Building

AP (Aug. 25, 2014) A young bull elk wandered inside the office building of a company in Dresden, Germany on Monday. The elk became trapped between a wall and glass windows while rescue workers tried to rescue him safely. (Aug. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins