Featured Research

from universities, journals, and other organizations

Mouse model improves understanding of clear cell sarcoma

Date:
February 11, 2013
Source:
University of Utah Health Sciences
Summary:
Geneticists have engineered mice that develop clear cell sarcoma (CCS), a significant step in better understanding how this rare and deadly soft tissue cancer arises.

Geneticists led by University of Utah Nobel Prize Laureate Mario R. Capecchi, Ph.D., have engineered mice that develop clear cell sarcoma (CCS), a significant step in better understanding how this rare and deadly soft tissue cancer arises. The mouse model also can potentially speed the development of drugs to target genes that must be activated for the cancer to form.

CCS arises in connective soft tissues, such as tendons, fat, blood vessels, and muscle. Researchers have known that the first step in the process that leads to CCS occurs when two human chromosomes, 12 and 22, randomly break after DNA gets damaged from the effects of sunlight or other causes. Each chromosome usually harmlessly rejoins after breaking. But occasionally part of one chromosome will join with part of the other to create a new gene called a fusion gene. When this gene, ews-atf1 is generated, it initiates the process that causes CCS.

The rare and aggressive nature of sarcomas, and their occurrence in children and young adults, long has interested Capecchi. In a study in the Feb. 11, 2013, online edition of Cancer Cell, he and colleagues from the University of Utah, the University of Texas M.D. Anderson Cancer Center in Houston, and Stanford University, describe how they developed the first mouse model of CCS by essentially recreating the human ews-atf1 gene in mice.

Capecchi, distinguished professor of human genetics and a Howard Hughes Medical Institute Investigator, says having a mouse model will teach researchers not only about CCS but also might provide an avenue for developing a drug that is more successful than current therapies. "Now that we have a mouse model for CCS, we can investigate what other events or gene mutations are required to form tumors," he says. "It also gives us the opportunity to investigate whether the CCS fusion gene might be a specific target for drugs."

Sarcomas often are removed by surgery, which is followed by radiation or chemotherapy. If the fusion gene turns out to be a viable drug target, Capecchi cautions, it could take a decade or longer before it's available to those with the disease.

To make the mouse model of CCS, Capecchi and his colleagues had to create the ews-atf1 fusion gene in mice. For this they employed the technique he developed and in 2007 was awarded the Nobel Prize in physiology or medicine for: gene targeting.

They manipulated the process by which a gene found in every mouse cell, rosa26, receives the instructions that determine its function. Called transcription, this process, is initiated by a region of DNA, known as a promoter, on the same chromosome as rosa26. Capecchi and his team used a molecular agent to interrupt the transcription process and induce the promoter to instead make the fusion gene on command of the enzyme that activates it. To turn on the fusion gene, this enzyme, Cre, also must be activated, and to do that the researchers used tamoxifen -- the same molecule in cancer drugs. To introduce Cre into cells, Capecchi used a small sequence of HIV as a vehicle for the enzyme to enter mouse cells that contained the fusion gene.

Although different cell types could give rise to this cancer, Capecchi identified mesenchymal stem cells, which can create a large number of tissue types, including the soft tissue where sarcomas form, as being especially good for producing CCS tumors. To activate the fusion gene, Cre must be injected into a mouse after birth.

Along with opening new avenues to understand and potentially treat CCS, the new mouse model also can help researchers learn more about carcinomas, the more common forms of human cancer, Capecchi believes. Carcinomas occur in the tissue that forms the inner and outer surfaces of organs, glands, and body cavities. These types of cancers require multiple steps and take a long time to develop, making them more difficult to study.

"My feeling is that identifying the different steps that give rise to CCS tumors may be informative on how carcinomas develop." Capecchi says. "Sarcomas are genetically more stable than carcinomas, which makes it easier to identify the events leading to the cancer. Learning about CCS might shed light on carcinomas."

There are more than 20 types of sarcoma, each with a different fusion gene, according to Capecchi.

The first author on the study is Krystal M. Straessler, a graduate student in Capecchi's lab. The other authors are Kevin B. Jones, M.D., and Huifeng Jin, both of the University of Utah orthopedics department and Hunstman Cancer Institute Center for Children's Cancer; Hao Hu, University of Texas M.D. Anderson Cancer Center, Houston; Matt van de Rijn, Stanford University Medical Center, Palo Alto, Calif.


Story Source:

The above story is based on materials provided by University of Utah Health Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. KrystalM. Straessler, KevinB. Jones, Hao Hu, Huifeng Jin, Matt vandeRijn, MarioR. Capecchi. Modeling Clear Cell Sarcomagenesis in the Mouse: Cell of Origin Differentiation State Impacts Tumor Characteristics. Cancer Cell, 2013; 23 (2): 215 DOI: 10.1016/j.ccr.2012.12.019

Cite This Page:

University of Utah Health Sciences. "Mouse model improves understanding of clear cell sarcoma." ScienceDaily. ScienceDaily, 11 February 2013. <www.sciencedaily.com/releases/2013/02/130211134738.htm>.
University of Utah Health Sciences. (2013, February 11). Mouse model improves understanding of clear cell sarcoma. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/02/130211134738.htm
University of Utah Health Sciences. "Mouse model improves understanding of clear cell sarcoma." ScienceDaily. www.sciencedaily.com/releases/2013/02/130211134738.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins