Featured Research

from universities, journals, and other organizations

New technology in the magnetic cooling of chips

Date:
February 20, 2013
Source:
Basque Research
Summary:
Scientists have developed a new technology in the magnetic cooling of chips based on the straining of materials. Compared with the current technologies, this advance reduces the impact on the environment.

Luis Hueso.
Credit: Image courtesy of Basque Research

Luis Hueso, the CICnanoGUNE researcher, together with researchers from the University of Cambridge, among others, has developed a new technology in the magnetic cooling of chips based on the straining of materials. Compared with the current technologies, this advance enables the impact on the environment to be lessened.

The work was recently published in the journal Nature Materials.

Current cooling systems, be they refrigerators, freezers or air conditioning units, make use of the compression and expansion of a gas. When the gas is compressed, it changes into a liquid state and when it expands it evaporates once again. To evaporate, it needs heat, which it extracts from the medium it touches and that way cools it down. However, this system is harmful for the environment and, what is more, the compressors used are not particularly effective.

One of the main alternatives that is currently being explored is magnetic cooling. It consists of using a magnetic material instead of a gas, and magnetizing and demagnetizing cycles instead of compression-expansion cycles. Magnetic cooling is a technique based on the magnetocaloric effect, in other words, it is based on the properties displayed by certain materials to modify their temperature when a magnetic field is applied to them. However, the applying of a magnetic field leads to many problems in current miniaturized technological devices (electronic chips, computer memories, etc.), since the magnetic field can interact negatively owing to its effect on nearby units. In this respect, the quest for new ways of controlling the magnetization is crucial.

Magnetism without magnetic fields

The researchers Luis Hueso, Andreas Berger and Odrej Hovorka of nanoGUNE have discovered that by using the straining of materials, they can get around the problems of applying a magnetic field. "By straining the material and then relaxing it an effect similar to that of a magnetic field is created, thus inducing the magnetocaloric effect responsible for cooling," explains Luis Hueso, leader of the nanodevices group at nanoGUNE and researcher in this study.

"This new technology enables us to have a more local and more controlled cooling method, without interfering with the other units in the device, and in line with the trend in the miniaturization of technological devices," adds Hueso.

20-nanometre films consisting of lanthanum, calcium, manganese and oxygen (La0.7Ca0.3MnO3) have been developed. According to Hueso, "the aim of this field of research is to find materials that are efficient, economical and environmentally friendly."

"The idea came about at Cambridge University and among various groups in the United Kingdom, France, Ukraine and the Basque Country we have come up with the right material and an effective technique for cooling electronic chips, computer memories and all these types of applications in microelectronics. Technologically, there would not be any obstacle to using them in fridges, freezers, etc. but economically it is not worthwhile because of the size," stresses Hueso.

Today, most of the money spent on the huge dataservers goes on cooling. That is why this new technology could be effective in applications of this kind. Likewise, one of the great limitations that computer processors have today is that they cannot operate as fast as one would like because they can easily overheat. "If we could cool them down properly, they would be more effective and could work faster," adds Hueso.

Dr Hueso stresses that this is a very interesting subject with respect to future patents.


Story Source:

The above story is based on materials provided by Basque Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. X. Moya, L. E. Hueso, F. Maccherozzi, A. I. Tovstolytkin, D. I. Podyalovskii, C. Ducati, L. C. Phillips, M. Ghidini, O. Hovorka, A. Berger, M. E. Vickers, E. Defay, S. S. Dhesi, N. D. Mathur. Giant and reversible extrinsic magnetocaloric effects in La0.7Ca0.3MnO3 films due to strain. Nature Materials, 2012; 12 (1): 52 DOI: 10.1038/NMAT3463

Cite This Page:

Basque Research. "New technology in the magnetic cooling of chips." ScienceDaily. ScienceDaily, 20 February 2013. <www.sciencedaily.com/releases/2013/02/130220084446.htm>.
Basque Research. (2013, February 20). New technology in the magnetic cooling of chips. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/02/130220084446.htm
Basque Research. "New technology in the magnetic cooling of chips." ScienceDaily. www.sciencedaily.com/releases/2013/02/130220084446.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins