Featured Research

from universities, journals, and other organizations

'Fat worms' inch scientists toward better biofuel production

Date:
February 26, 2013
Source:
Michigan State University
Summary:
Fat worms confirm that researchers have successfully engineered a plant with oily leaves -- a feat that could enhance biofuel production as well as lead to improved animal feeds.

MSU has successfully engineered a plant with oily leaves -- a feat that could enhance biofuel production as well as lead to improved animal feeds.
Credit: Courtesy of Kurt Stepnitz

Fat worms confirm that researchers from Michigan State University have successfully engineered a plant with oily leaves - a feat that could enhance biofuel production as well as lead to improved animal feeds.

The results, published in the current issue of The Plant Cell, the journal of the American Society of Plant Biologists, show that researchers could use an algae gene involved in oil production to engineer a plant that stores lipids or vegetable oil in its leaves -- an uncommon occurrence for most plants.

Traditional biofuel research has focused on improving the oil content of seeds. One reason for this focus is because oil production in seeds occurs naturally. Little research, however, has been done to examine the oil production of leaves and stems, as plants don't typically store lipids in these tissues.

Christoph Benning, MSU professor of biochemistry and molecular biology, led a collaborative effort with colleagues from the Great Lakes Bioenergy Research Center. The team's efforts resulted in a significant early step toward producing better plants for biofuels.

"Many researchers are trying to enhance plants' energy density, and this is another way of approaching it," Benning said. "It's a proof-of-concept that could be used to boost plants' oil production for biofuel use as well as improve the nutrition levels of animal feed."

Benning and his colleagues began by identifying five genes from one-celled green algae. From the five, they identified one that, when inserted into Arabidopsis thaliana, successfully boosted oil levels in the plant's leaf tissue.

To confirm that the improved plants were more nutritious and contained more energy, the research team fed them to caterpillar larvae. The larvae that were fed oily leaves from the enhanced plants gained more weight than worms that ate regular leaves.

For the next phase of the research, Benning and his colleagues will work to enhance oil production in grasses and algae that have economic value. The benefits of this research are worth pursuing, Benning said.

"If oil can be extracted from leaves, stems and seeds, the potential energy capacity of plants may double," he said. "Further, if algae can be engineered to continuously produce high levels of oil, rather than only when they are under stress, they can become a viable alternative to traditional agricultural crops."

Moreover, algae can be grown on poor agricultural land -- a big plus in the food vs. fuel debate, he added.

"These basic research findings are significant in advancing the engineering of oil-producing plants," said Kenneth Keegstra, GLBRC scientific director and MSU University Distinguished Professor of biochemistry and molecular biology. "They will help write a new chapter on the development of production schemes that will enhance the quantity, quality and profitability of both traditional and nontraditional crops."

Additional MSU researchers and GLBRC members contributing to the study include Gregg Howe, biochemistry and molecular biology professor; John Olhrogge, University Distinguished Professor of plant biology; and Gavin Reid, biochemistry and molecular biology associate professor.


Story Source:

The above story is based on materials provided by Michigan State University. Note: Materials may be edited for content and length.


Cite This Page:

Michigan State University. "'Fat worms' inch scientists toward better biofuel production." ScienceDaily. ScienceDaily, 26 February 2013. <www.sciencedaily.com/releases/2013/02/130226092126.htm>.
Michigan State University. (2013, February 26). 'Fat worms' inch scientists toward better biofuel production. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2013/02/130226092126.htm
Michigan State University. "'Fat worms' inch scientists toward better biofuel production." ScienceDaily. www.sciencedaily.com/releases/2013/02/130226092126.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins