Featured Research

from universities, journals, and other organizations

'True grit' erodes assumptions about evolution of Earth's first grasslands

Date:
March 4, 2013
Source:
University of Washington
Summary:
New work in Argentina where scientists had previously thought Earth's first grasslands emerged 38 million years ago, shows the area at the time covered with tropical forests rich with palms, bamboos and gingers. Grit and volcanic ash in those forests could have caused the evolution of teeth in horse-like animals that scientists mistakenly thought were adaptations in response to emerging grasslands.

University of Washington researchers collect samples from Gran Barranca, Argentina, that offers access to layers of soils, plant remains, volcanic ash and sand going back millions of years. The section pictured represents 800,000 years of layering and is mainly composed of volcanic ash deposited by wind and rivers.
Credit: R Madden/U of Chicago

Dining on field grasses would be ruinous to human teeth, but mammals such as horses, rhinos and gazelles evolved long, strong teeth that are up to the task.

New research led by the University of Washington challenges the 140-year-old assumption that finding fossilized remains of prehistoric animals with such teeth meant the animals were living in grasslands and savannas. Instead it appears certain South American mammals evolved the teeth in response to the gritty dust and volcanic ash they encountered while feeding in an ancient tropical forest.

The new work was conducted in Argentina where scientists had thought Earth's first grasslands emerged 38 million years ago, an assumption based on fossils of these specialized teeth. But the grasslands didn't exist. Instead there were tropical forests rich with palms, bamboos and gingers, according to Caroline Strömberg, UW assistant professor of biology and lead author of an article in Nature Communications.

"The assumption about grasslands and the evolution of these teeth was based on animal fossils," Strömberg said. "No one had looked in detail at evidence from the plant record before. Our findings show that you shouldn't assume adaptations always came about in the same way, that the trigger is the same environment every time."

To handle a lifetime of rough abrasion, the specialized teeth -- called high-crowned cheek teeth -- are especially long and mostly up in the animals' gums when they are young. As chewing surfaces of the teeth wear away, more of the tooth emerges from the gums until the crowns are used up. In each tooth, bone-like dentin and tough enamel are complexly folded and layered to create strong ridged surfaces for chewing. Human teeth have short crowns and enamel only on the outside of each tooth.

In Argentina, mammals apparently developed specialized teeth 20 million years or more before grasslands appeared, Strömberg said. This was different from her previous work in North America and western Eurasia where she found the emergence of grasslands coincided with the early ancestors of horses and other animals evolving specialized teeth. The cause and effect, however, took 4 million years, considerably more lag time than previously thought.

The idea that specialized teeth could have evolved in response to eating dust and grit on plants and the ground is not new. In the case of Argentine mammals, Strömberg and her co-authors hypothesize that the teeth adapted to handle volcanic ash because so much is present at the study site. For example, some layers of volcanic ash are as thick as 20 feet (six meters). In other layers, soils and roots were just starting to develop when they were smothered with more ash.

Chewing grasses is abrasive because grasses take up more silica from soils than most other plants. Silica forms minute particles inside many plants called phytoliths that, among other things, help some plants stand upright and form part of the protective coating on seeds.

Phytoliths vary in appearance under a microscope depending on the kind of plant. When plants die and decay, the phytoliths remain as part of the soil layer. In work funded by the National Science Foundation, Strömberg and her colleagues collected samples from Argentina's Gran Barranca, literally "Great Cliff," that offers access to layers of soil, ash and sand going back millions of years.

The phytoliths they found in 38-million-year-old layers -- when ancient mammals in that part of the world developed specialized teeth -- were overwhelmingly from tropical forests, Strömberg said.

"In modern grasslands and savannas you'd expect at least 35 to 40 percent -- more likely well over 50 percent -- of grass phytoliths. The fact we have so little evidence of grasses is very diagnostic of a forested habitat," she said.

The emergence of grasslands and the evolution of specialized teeth in mammals are regarded as a classic example of co-evolution, one that has occurred in various places around the world. However, as the new work shows, "caution is required when using this functional trait for habitat reconstruction," the co-authors write.

Other co-authors are Regan Dunn, a UW doctoral candidate; Richard Madden, University of Chicago; Matthew Kohn, Boise State University; and Alfredo Carlini, National University of La Plata, Argentina.


Story Source:

The above story is based on materials provided by University of Washington. The original article was written by Sandra Hines. Note: Materials may be edited for content and length.


Journal Reference:

  1. Caroline A.E. Strömberg, Regan E. Dunn, Richard H. Madden, Matthew J. Kohn, Alfredo A. Carlini. Decoupling the spread of grasslands from the evolution of grazer-type herbivores in South America. Nature Communications, 2013; 4: 1478 DOI: 10.1038/ncomms2508

Cite This Page:

University of Washington. "'True grit' erodes assumptions about evolution of Earth's first grasslands." ScienceDaily. ScienceDaily, 4 March 2013. <www.sciencedaily.com/releases/2013/03/130304211502.htm>.
University of Washington. (2013, March 4). 'True grit' erodes assumptions about evolution of Earth's first grasslands. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2013/03/130304211502.htm
University of Washington. "'True grit' erodes assumptions about evolution of Earth's first grasslands." ScienceDaily. www.sciencedaily.com/releases/2013/03/130304211502.htm (accessed July 24, 2014).

Share This




More Fossils & Ruins News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: MD Church Built in 1773 Ravaged by Fire

Raw: MD Church Built in 1773 Ravaged by Fire

AP (July 22, 2014) — Authorities say a 241-year-old church on the National Register of Historic Places has been ravaged by fire in Maryland. (July 22) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) — Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
A Centuries' Old British Tradition Is Far from a Swan Song

A Centuries' Old British Tradition Is Far from a Swan Song

AFP (July 19, 2014) — As if it weren't enough that the Queen is the Sovereign of the UK and 15 other Commonwealth realms, she is also the owner of all Britain's unmarked swans. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) — Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins