Featured Research

from universities, journals, and other organizations

Quantum refrigerator offers extreme cooling and convenience

Date:
March 8, 2013
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have demonstrated a solid-state refrigerator that uses quantum physics in micro- and nanostructures to cool a much larger object to extremely low temperatures. What's more, the prototype refrigerator, which measures a few inches in outer dimensions, enables researchers to place any suitable object in the cooling zone and later remove and replace it, similar to an all-purpose kitchen refrigerator.

NIST's prototype solid-state refrigerator uses quantum physics in the square chip mounted on the green circuit board to cool the much larger copper platform (in the middle of the photo) below standard cryogenic temperatures. Other objects can also be attached to the platform for cooling.
Credit: Schmidt/NIST

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a solid-state refrigerator that uses quantum physics in micro- and nanostructures to cool a much larger object to extremely low temperatures.

Related Articles


NIST's prototype solid-state refrigerator uses quantum physics in the square chip mounted on the green circuit board to cool the much larger copper platform (in the middle of the photo) below standard cryogenic temperatures. Other objects can also be attached to the platform for cooling. Credit: Schmidt/NIST View hi-resolution image

What's more, the prototype NIST refrigerator, which measures a few inches in outer dimensions, enables researchers to place any suitable object in the cooling zone and later remove and replace it, similar to an all-purpose kitchen refrigerator. The cooling power is the equivalent of a window-mounted air conditioner cooling a building the size of the Lincoln Memorial in Washington, D.C.

"It's one of the most flabbergasting results I've seen," project leader Joel Ullom says. "We used quantum mechanics in a nanostructure to cool a block of copper. The copper is about a million times heavier than the refrigerating elements. This is a rare example of a nano- or microelectromechanical machine that can manipulate the macroscopic world."

The technology may offer a compact, convenient means of chilling advanced sensors below standard cryogenic temperatures -- 300 milliKelvin (mK), typically achieved by use of liquid helium -- to enhance their performance in quantum information systems, telescope cameras, and searches for mysterious dark matter and dark energy.

As described in Applied Physics Letters, the NIST refrigerator's cooling elements, consisting of 48 tiny sandwiches of specific materials, chilled a plate of copper, 2.5 centimeters on a side and 3 millimeters thick, from 290 mK to 256 mK. The cooling process took about 18 hours. NIST researchers expect that minor improvements will enable faster and further cooling to about 100 mK.

The cooling elements are sandwiches of a normal metal, a 1-nanometer-thick insulating layer, and a superconducting metal. When a voltage is applied, the hottest electrons "tunnel" from the normal metal through the insulator to the superconductor. The temperature in the normal metal drops dramatically and drains electronic and vibrational energy from the object being cooled.

NIST researchers previously demonstrated this basic cooling method but are now able to cool larger objects that can be easily attached and removed. Researchers developed a micromachining process to attach the cooling elements to the copper plate, which is designed to be a stage on which other objects can be attached and cooled. Additional advances include better thermal isolation of the stage, which is suspended by strong, cold-tolerant cords.

Cooling to temperatures below 300 mK currently requires complex, large and costly apparatus. NIST researchers want to build simple, compact alternatives to make it easier to cool NIST's advanced sensors. Researchers plan to boost the cooling power of the prototype refrigerator by adding more and higher-efficiency superconducting junctions and building a more rigid support structure.

This work is supported by the National Aeronautics and Space Administration.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Peter J. Lowell, Galen C. O'Neil, Jason M. Underwood, Joel N. Ullom. Macroscale refrigeration by nanoscale electron transport. Applied Physics Letters, 2013; 102 (8): 082601 DOI: 10.1063/1.4793515

Cite This Page:

National Institute of Standards and Technology (NIST). "Quantum refrigerator offers extreme cooling and convenience." ScienceDaily. ScienceDaily, 8 March 2013. <www.sciencedaily.com/releases/2013/03/130308183821.htm>.
National Institute of Standards and Technology (NIST). (2013, March 8). Quantum refrigerator offers extreme cooling and convenience. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2013/03/130308183821.htm
National Institute of Standards and Technology (NIST). "Quantum refrigerator offers extreme cooling and convenience." ScienceDaily. www.sciencedaily.com/releases/2013/03/130308183821.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins