Featured Research

from universities, journals, and other organizations

Biochemical engineering: Waste not, want not

Date:
March 13, 2013
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
A simple fermentation treatment can convert a by-product of biofuel production into a valuable chemical feedstock for a wide range of biomedical products.

A simple fermentation treatment can convert a by-product of biofuel production into a valuable chemical feedstock for a wide range of biomedical products.

Related Articles


Powered by sunlight, microalgae are tiny biofuel generators that soak up carbon dioxide to produce energy-rich lipids, which are showing promise as a potential source of clean energy. Maximizing lipid production is the focus of many research efforts, but the material remaining after lipid extraction has caught the attention of Md. Mahabubur Rahman Talukder and his co-workers at the A*STAR Institute of Chemical and Engineering Sciences. Currently, this 'lipid-depleted biomass' is either burned for energy, or simply discarded as a waste product. Talukder and his team have developed a process that turns this material into a valuable chemical feedstock1.

The researchers have pioneered a two-step biochemical process that converts lipid-depleted biomass into lactic acid. This substance is in increasing demand as a feedstock for polylactic acid (PLA), a biopolymer with numerous medical applications, ranging from surgical sutures to orthopedic implants. The high cost of raw materials used in the manufacture of lactic acid currently limits PLA use. Thus, producing an alternative source from algal lipid-extraction waste is proving attractive. Generating two valuable products from the algae, specifically the microalgae Nannochloropsis salina, would spread the costs of microalgae production, making the biofuel more cost-competitive with conventional fuels.

To produce both lipid and lactic acid from N. salina, Talukder and his co-workers first subjected the microalgae to an acid hydrolysis pre-treatment step. This process broke down the organisms' polysaccharide-based cell walls into simple sugars, while releasing the lipid for extraction. The researchers also systematically examined different acid concentrations, reaction times and temperatures. They identified that treatment for 1 hour at 120 °C maximizes sugar and lipid production.

When Talukder and his co-workers extracted the lipid at this point, the lipid-depleted biomass, now rich in sugars, remained. They converted this material into lactic acid by fermentation. The team then added the bacterium Lactobacillus pentosus, which consumed the sugars over a 48-hour period, to generate the lactic acid.

The researchers found that, to maximize lactic acid production, they first had to remove metal ions from the mixture. Microalgae harvesting typically involves an iron chloride treatment, but the residual iron appeared to inhibit fermentation. "One of the next steps in our research will be to develop a chemical-free microalgae harvesting method so that fermentation will not be negatively affected," Talukder says. The researchers are also screening different bacterial strains for higher lactic acid productivity, and developing their current two-step process into a single-step operation.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Md. Mahabubur Rahman Talukder, Probir Das, Jin Chuan Wu. Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochemical Engineering Journal, 2012; 68: 109 DOI: 10.1016/j.bej.2012.07.001

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Biochemical engineering: Waste not, want not." ScienceDaily. ScienceDaily, 13 March 2013. <www.sciencedaily.com/releases/2013/03/130313111705.htm>.
The Agency for Science, Technology and Research (A*STAR). (2013, March 13). Biochemical engineering: Waste not, want not. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2013/03/130313111705.htm
The Agency for Science, Technology and Research (A*STAR). "Biochemical engineering: Waste not, want not." ScienceDaily. www.sciencedaily.com/releases/2013/03/130313111705.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins