Featured Research

from universities, journals, and other organizations

Ash from refuse could become hydrogen gas

Date:
March 25, 2013
Source:
Lund University
Summary:
Every year, millions of tons of environmentally harmful ash is produced worldwide, and is mostly dumped in landfill sites or, in some countries, used as construction material. The ash is what is left when rubbish has been burnt in thermal power stations. A researcher has now developed a technique to use the ash to produce hydrogen gas.

Every year, millions of tons of environmentally harmful ash is produced worldwide, and is mostly dumped in landfill sites or, in some countries, used as construction material. The ash is what is left when rubbish has been burnt in thermal power stations. A researcher from Lund University in Sweden has now developed a technique to use the ash to produce hydrogen gas.
Credit: Image courtesy of Lund University

Every year, millions of tons of environmentally harmful ash is produced worldwide, and is mostly dumped in landfill sites or, in some countries, used as construction material. The ash is what is left when rubbish has been burnt in thermal power stations. A researcher from Lund University in Sweden has now developed a technique to use the ash to produce hydrogen gas. The method is presented in a new thesis.

Related Articles


The technique has significant potential: 20 billion litres of hydrogen gas a year, or 56 gigawatt-hours (GWh). Calculated as electricity, the energy is the equivalent of the annual needs of around 11 000 detached houses. Hydrogen gas is valuable and is viewed by many as an increasingly important energy source, for example as a vehicle fuel.

"The ash can be used as a resource through recovery of hydrogen gas instead of being allowed to be released into the air as at present. Our ash deposits are like a goldmine," said Aamir Ilyas, Doctor of Water Resources Engineering at Lund University and the developer of the technique. Refuse incineration is a widespread practice in Europe.

The technique involves placing the ash in an oxygen-free environment. The ash is dampened with water, whereupon it forms hydrogen gas. The gas is sucked up through pipes and stored in tanks.

It is the heavy, grit-like bottom ash that is used. In combustion, a lighter fly ash is also formed. The bottom ash remains in quarantine, in the open air, at the site for up to six months to prevent leaching of environmentally harmful metals and the risk of hydrogen gas being formed, since accumulation of hydrogen during indoor storage can result in explosion.

"A bonus is that this method removes the risk of hydrogen gas. It also reduces the strain on our landfill sites."

In some countries, processed bottom ash is sometimes used as a construction material for roads and buildings. This doesn't happen at present in Sweden because the ash contains hazardous substances that do not meet the Swedish Environmental Protection Agency's strict requirements. Usually it is used as top cover at landfills.

Today, hydrogen gas is mainly produced from natural gas. However, biogas, oil and coal can also be used as the raw material. Hydrogen gas is an important raw material in industry and is used in refineries and to manufacture ammonia. Hydrogen gas has the potential to produce electricity and heat and also to become a vehicle fuel; a number of car manufacturers are investing in hydrogen-powered fuel cell cars. Hydrogen gas is not expensive, but because there is a lack of infrastructure for the production of the gas, the production and handling costs are high. However, these costs would decrease in the future once a production system is established.

"There will not be one universal solution that will be used to generate energy. We need to find a number of solutions," said Kenneth M. Persson, Professor of Water Resources Engineering and one of Aamir Ilyas's supervisors.


Story Source:

The above story is based on materials provided by Lund University. Note: Materials may be edited for content and length.


Cite This Page:

Lund University. "Ash from refuse could become hydrogen gas." ScienceDaily. ScienceDaily, 25 March 2013. <www.sciencedaily.com/releases/2013/03/130325093536.htm>.
Lund University. (2013, March 25). Ash from refuse could become hydrogen gas. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/03/130325093536.htm
Lund University. "Ash from refuse could become hydrogen gas." ScienceDaily. www.sciencedaily.com/releases/2013/03/130325093536.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins