Featured Research

from universities, journals, and other organizations

New promise for an HIV vaccine as researchers overcome crucial obstacle

Date:
April 2, 2013
Source:
Seattle Biomedical Research Institute (Seattle BioMed)
Summary:
For the first time, researchers were able to stimulate immune cells to produce broadly neutralizing antibodies: a critical step that has eluded researchers for decades but that provides promise for a successful HIV vaccine.

In a crucial step towards developing a successful HIV vaccine, researchers have been able, for the first time, to stimulate immune cells that can produce broadly neutralizing antibodies: a feat that has eluded vaccine researchers for decades. The exciting results are published in this month's issue of the Journal of Experimental Medicine.

Related Articles


It is widely accepted that a successful vaccine against HIV/AIDS would have to elicit antibodies to prevent infection from a wide spectrum of HIV strains. So far, no candidate vaccine for HIV has been able to produce such antibodies.

Leonidas Stamatatos, Andrew McGuire and their team of researchers at Seattle BioMed, in collaboration with colleagues at The Rockefeller University, the Scripps Research Institute and CalTech, wanted to understand why that was the case. A major goal of an HIV vaccine is to stimulate B cells to create antibodies that can effectively block HIV from entering a human host cell. The first generation of antibodies -- called "germline antibodies" -- are partially embedded in a B cell's membrane. If a germline antibody binds to a protein (called an "envelope protein") on the surface of HIV, even weakly, then the B cell is activated and begins producing antibodies not only on the surface of B cells, but also in the bloodstream. Activated B cells evolve to produce antibodies with even higher binding affinity to HIV, eventually resulting in a "mature" antibody. Some mature antibodies can bind to envelope proteins of many different HIV strains and prevent them from infecting cells. For this reason, these antibodies are called "broadly neutralizing antibodies." These are the antibodies a vaccine needs to elicit.

A small number of people infected with HIV naturally produce broadly neutralizing antibodies. By sequencing the DNA of their mature antibodies, Stamatatos and McGuire were able to deduce what the originating germline antibodies likely looked like. They then tested how well the mature and germline antibodies bound to the envelope protein of different HIV strains from around the world. Some of these envelope proteins have been tested previously as vaccine candidates, but they did not elicit broadly neutralizing antibodies. While the mature antibodies were able to bind 80-90% of these diverse envelope proteins, the germline antibodies did not bind at all. This indicated that a problem with previously tested HIV vaccines is that they do not bind to germline antibodies on B cells that ultimately give rise to mature, broadly neutralizing antibodies. Without this first binding step, the immune response to HIV is stopped before it can even truly begin.

Next, they turned to the structure of the HIV envelope proteins to determine why they were able to bind to the mature antibodies but not the germline. They discovered that several sugar molecules, called glycans, which HIV adds to its envelope protein to evade the immune system, were blocking the germline antibody from binding to and activating B cells.

After engineering an HIV envelope protein that lacks specific glycans, McGuire and Stamatatos ran their binding tests again. This time, the germline antibodies were able to bind the modified HIV protein. They also verified that the modified HIV protein was capable of starting the process of antibody maturation in B cells, kicking off an immune response that could eventually result in broadly neutralizing antibodies.

"We have overcome the first obstacle to elicit one type of anti-HIV broadly neutralizing antibodies through vaccination," explains McGuire. By administering the modified HIV protein as a vaccine, the immune system could become equipped to combat the real virus when it is encountered years down the line.


Story Source:

The above story is based on materials provided by Seattle Biomedical Research Institute (Seattle BioMed). Note: Materials may be edited for content and length.


Cite This Page:

Seattle Biomedical Research Institute (Seattle BioMed). "New promise for an HIV vaccine as researchers overcome crucial obstacle." ScienceDaily. ScienceDaily, 2 April 2013. <www.sciencedaily.com/releases/2013/04/130402090836.htm>.
Seattle Biomedical Research Institute (Seattle BioMed). (2013, April 2). New promise for an HIV vaccine as researchers overcome crucial obstacle. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/04/130402090836.htm
Seattle Biomedical Research Institute (Seattle BioMed). "New promise for an HIV vaccine as researchers overcome crucial obstacle." ScienceDaily. www.sciencedaily.com/releases/2013/04/130402090836.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins