Featured Research

from universities, journals, and other organizations

A new approach for spinal muscular atrophy?

Date:
April 9, 2013
Source:
Brown University
Summary:
Spinal muscular atrophy is a debilitating neuromuscular disease that in its most severe form is the leading genetic cause of infant death. By experimenting with an ALS drug in two very different animal models, researchers have identified a new potential mechanism for developing an SMA treatment.

There is no specific drug to treat spinal muscular atrophy (SMA), a family of motor neuron diseases that in its most severe form is the leading genetic cause of infant death in the United States and affects one in 6,000 people overall. But a new multispecies study involving a drug that treats amyotrophic lateral sclerosis (ALS) has pinpointed a mechanism of SMA that drug developers might be able to exploit for a new therapy.

Related Articles


The research, published in the Journal of Neuroscience, reports that the drug Riluzole advanced neural cell development in a mammalian model of SMA and restored neuromuscular function and mobility in a Caenorhabditis elegans worm model of the disease.

Riluzole has already been tested as a therapy in a very small study of severely affected SMA patients. It failed to help. Nevertheless, what makes the new research encouraging, said Anne Hart, professor of neuroscience at Brown and senior author on the paper, is that the study traces the beneficial action of Riluzole to specific "SK2" potassium channels in worm neurons. Humans have these channels too, and if they can be more precisely targeted by a new drug, she said, that could make a more meaningful difference, at least for some patients.

"We're not suggesting based on this that SMA patients should ask their doctors for Riluzole," Hart said, "but we are suggesting that this pathway would be useful for therapeutic development."

How Riluzole works

Because SMA has a lot in common with ALS, Hart thought Riluzole might still be worth studying in the context of SMA. To do so, she partnered with fellow researchers at Boston Children's Hospital. They worked in mouse neuronal cells while her team at Brown worked in the worms.

For each system, the researchers created SMA models in different ways by disabling the gene that produces the survival motor neuron (SMN) protein. Depletion of that protein causes SMA in people too.

In the mammalian neuronal cells, the Children's Hospital researchers found that Riluzole promoted the growth of axons that was lacking in the SMN-depleted cells. However, Riluzole did this not by increasing SMN levels. Instead, the researchers found evidence that drug treatment matured the neurons more quickly in normal cells.

Most attempts to treat SMA have relied on trying to maintain or restore higher levels of SMN, Hart noted. But Riluzole, or a future drug, may instead be able to work by accelerating cell maturity.

In the worms meanwhile, the Brown researchers found that Riluzole restored two important neuromuscular behaviors of SMA worms: the pumping action that allows the worms to move food through their digestive tracts and the body bending that they perform when swimming.

To learn how Riluzole had this effect, they performed further experiments testing various potassium channels, including SK2, that Riluzole is known to act upon. Losing these channels didn't cause more problems in animals with less SMN protein, but losing the SK2 potassium channels in particular made neuromuscular function worse. Without the SK2 channels, the drug Riluzole didn't improve function.

"This told us that Riluzole improves motorneuron function by acting through SK2 channels, which we did not know before," said lead author Maria Dimitriadi, a postdoctoral researcher in Hart's group. "This is important because understanding how SK2 channels affect motorneuron disease may eventually lead to a treatment helping both ALS and SMA patients."

In addition to Hart and Dimitriadi, the paper's other authors are Geetika Kalloo and Jill Yersak at Brown, and Min Jeong Kye and Mustafa Sahin at Children's Hospital and Harvard Medical School. Kye now works at the University of Cologne, Germany.

Support for the research came from the SMA Foundation, the National Institute of Neurological Diseases and Stroke (grant NS066888), the Slaney Family Fund, and Children's Hospital of Boston.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "A new approach for spinal muscular atrophy?." ScienceDaily. ScienceDaily, 9 April 2013. <www.sciencedaily.com/releases/2013/04/130409173457.htm>.
Brown University. (2013, April 9). A new approach for spinal muscular atrophy?. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2013/04/130409173457.htm
Brown University. "A new approach for spinal muscular atrophy?." ScienceDaily. www.sciencedaily.com/releases/2013/04/130409173457.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins