Featured Research

from universities, journals, and other organizations

Nitrogen has key role in estimating carbon dioxide emissions from land use change

Date:
April 19, 2013
Source:
University of Illinois at Urbana-Champaign
Summary:
A new global-scale modeling study that takes into account nitrogen -- a key nutrient for plants -- estimates that carbon emissions from human activities on land were 40 percent higher in the 1990s than in studies that did not account for nitrogen. Plant regrowth -- and therefore carbon assimilation by plants -- is limited by nitrogen availability, causing other studies to overestimate regrowth and underestimate net emissions from the harvest-regrowth cycle.

Atmospheric sciences professor Atul Jain led a group that studied the global effects of nitrogen on carbon dioxide emissions from land use change, such as deforestation to expand cropland.
Credit: L. Brian Stauffer

A new global-scale modeling study that takes into account nitrogen -- a key nutrient for plants -- estimates that carbon emissions from human activities on land were 40 percent higher in the 1990s than in studies that did not account for nitrogen.

Researchers at the University of Illinois at Urbana-Champaign and the University of Bristol Cabot Institute published their findings in the journal Global Change Biology. The findings will be a part of the upcoming Fifth Assessment Report from the Intergovernmental Panel on Climate Change. "One nutrient can make a huge impact on the carbon cycle and net emissions of the greenhouse gas carbon dioxide," said study leader Atul Jain, a professor of atmospheric sciences at the U. of I. "We know that climate is changing, but the question is how much? To understand that, we have to understand interactive feedback processes -- the interactions of climate with the land, but also interactions between nutrients within the land."

The carbon cycle is a balance of carbon emissions into the atmosphere and absorption by oceans and terrestrial ecosystems. Carbon is absorbed by plants during photosynthesis and by the oceans through sea-air gas exchange. On the other side of the cycle, carbon is released by burning fossil fuels and by changes in land use -- deforestation to expand croplands, for example. While fossil fuel emissions are well-known, there are large uncertainties in estimated emissions from land use change.

"When humans disturb the land, the carbon stored in the plants and the soil goes back into the atmosphere," Jain said. "But when plants regrow, they absorb carbon through photosynthesis. Absorption or release of carbon can be enhanced or dampened depending on environmental conditions, such as climate and nutrient availability."

Nitrogen is an essential mineral nutrient for plants, which means that plants need it to grow and thrive. In nontropical regions especially, plant regrowth -- and therefore carbon assimilation by plants -- is limited by nitrogen availability.

"Most models used to estimate global land use change emissions to date do not have the capability to model this nitrogen limitation on plant regrowth following land use change," said Prasanth Meiyappan, a graduate student who is a co-author of the study. "This means, for example, they overestimate regrowth and they underestimate net emissions from the harvest-regrowth cycle in temperate forest plantations."

Jain's team, in collaboration with Joanna House, a researcher at the University of Bristol's Cabot Institute, concluded that by not accounting for nitrogen as a limiting nutrient for plant growth, other models might have underestimated the 1990s carbon emissions from land use change by 70 percent in nontropical regions and by 40 percent globally.

"This gross underestimation has great implications for international policy," House said. "If emissions from land-use change are higher than we thought, or the land sink (regrowth) is more limited, then future emissions cuts would have to be deeper to meet the same mitigation targets." Next, the researchers are investigating the impacts of other nutrients, such as phosphorus, on the carbon cycle. They also are estimating the carbon stored in the soil, and how much is released or absorbed when the soil is perturbed.

"Soil has great potential to sequester carbon," Jain said. "The question is, how much that's being released is being sequestered in the soil? We have to understand how human behavior is changing our environment and interacting with our ecosystems."

The National Aeronautics and Space Administration, the U.S. Department of Energy and the UK Leverhulme Trust supported this work.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Journal Reference:

  1. Atul K. Jain, Prasanth Meiyappan, Yang Song, Joanna I. House. CO2emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data. Global Change Biology, 2013; DOI: 10.1111/gcb.12207

Cite This Page:

University of Illinois at Urbana-Champaign. "Nitrogen has key role in estimating carbon dioxide emissions from land use change." ScienceDaily. ScienceDaily, 19 April 2013. <www.sciencedaily.com/releases/2013/04/130419160710.htm>.
University of Illinois at Urbana-Champaign. (2013, April 19). Nitrogen has key role in estimating carbon dioxide emissions from land use change. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/04/130419160710.htm
University of Illinois at Urbana-Champaign. "Nitrogen has key role in estimating carbon dioxide emissions from land use change." ScienceDaily. www.sciencedaily.com/releases/2013/04/130419160710.htm (accessed July 25, 2014).

Share This




More Earth & Climate News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Higgins Breaks Record at Mt. Washington

Higgins Breaks Record at Mt. Washington

Driving Sports (July 24, 2014) Subaru Rally Team USA drivers David Higgins and Travis Pastrana face off against a global contingent of racers at the annual Mt. Washington Hillclimb in New Hampshire. Includes exclusive in-car footage from Higgins' record attempt. Video provided by Driving Sports
Powered by NewsLook.com
Storm Kills Three, Injures 20 at Virginia Campground

Storm Kills Three, Injures 20 at Virginia Campground

Reuters - US Online Video (July 24, 2014) A likely tornado tears through an eastern Virginia campground, killing three and injuring at least 20. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins