Featured Research

from universities, journals, and other organizations

Ceramic foam cleans up exhaust gases

Date:
April 25, 2013
Source:
Empa
Summary:
The introduction next year of the Euro 6 exhaust-gas standard means that catalytic converters will become more expensive, above all for diesel vehicles. Scientists are working on a catalytic substrate made of ceramic foam which, because of its structure, is more efficient and therefore more economic. Not only that – it also requires less noble metal coating.

The irregular structure of the ceramic foam substrate causes the exhaust gas to flow in a turbulent manner, improving flow distribution and therefore reducing the quantity of noble metals required for catalysis.
Credit: Image courtesy of Empa

The introduction next year of the Euro 6 exhaust-gas standard means that catalytic converters will become more expensive, above all for diesel vehicles. Empa is working on a catalytic substrate made of ceramic foam which, because of its structure, is more efficient and therefore more economic. Not only that -- it also requires less noble metal coating.

Related Articles


Conventional catalytic cleaning units for exhaust gases are made with a regular honeycomb structure. The catalytically active layer, which contains valuable noble metals such as platinum, rhodium or palladium, is deposited on the surface of this one-piece, or monolithic, ceramic substrate. The hot exhaust gases flow through the catalyst in a non-turbulent manner. However, since most of the flow occurs in the middle of the catalyst, this region becomes exhausted more rapidly than the peripheral areas of the monolith, which remain more or less unused. In order to extend the service life of the unit, it must be made longer. But longer also means more surface area, more noble metal content and therefore higher cost.

Empa researchers from the Internal Combustion Engines Laboratory, under the leadership of Panayotis Dimopoulos Eggenschwiler, have succeeded in finding an innovative solution to this problem. The team is working on a catalytic substrate made of ceramic foam which, in future, will replace the conventional monolithic structure. For the same catalytic performance the novel device is significantly cheaper than the monolith-based unit. In contrast to the latter, the ceramic foam has in an irregular structure -- much like a sponge -- which causes the gas passing through it to flow in a turbulent manner, distributed equally throughout the whole of its volume. Although the foam catalyst actually has less surface area than the monolith, this area is much more efficiently utilized. As a result, to achieve the same effect as a conventional catalytic unit, the ceramic type requires only one third as much expensive noble metal -- and only half the physical length.

Despite the fragility of the ceramic foam, with the help of colleagues from Empa's High-Performance Ceramics Laboratory the scientists succeeded in increasing the mechanical strength of the material many times over. Currently the research team is working to optimize the structure of the ceramic -- the foam substrate has a greater air resistance than the monolith, which results in a slight comparative increase in fuel consumption. Using sophisticated computer simulation techniques, the Empa team has developed foam structures which reduce the air resistance without affecting the necessary turbulence.

Although at the moment the foam catalyst is being manufactured purely on the laboratory scale at Empa, industrial contacts are already showing interest in the new device. The Belgian material technologies company Umicore is a partner in the project, as is Fiat Powertrain Technologies. The foam catalyst is being proven in a diesel test vehicle on the Empa site. In addition, over the last 18 months a vehicle fitted with the innovative new catalyst belonging to the Industriellen Werke Basel (IWB) has been driven around in a long-term test eventually intended to cover at least 150,000 km.

Cheaper catalysts despite more stringent exhaust gas standards

The Foamcat represents the ideal alternative to the monolithic catalyst, above all for small diesel vehicles. After the Euro 6 exhaust-gas standard comes into force in September 2014, polluting emissions from diesel motors will be obliged to sink significantly. In particular, after this date a nitrogen monoxide catalyst will be compulsory. In combination with a particle filter and the conventional hydrocarbon and carbon dioxide catalyst, this will make exhaust gas treatment for diesel automobiles significantly more expensive. With its greatly reduced requirement of expensive noble metals, Empa's Foamcat will help to minimize these costs.


Story Source:

The above story is based on materials provided by Empa. Note: Materials may be edited for content and length.


Cite This Page:

Empa. "Ceramic foam cleans up exhaust gases." ScienceDaily. ScienceDaily, 25 April 2013. <www.sciencedaily.com/releases/2013/04/130425132526.htm>.
Empa. (2013, April 25). Ceramic foam cleans up exhaust gases. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/04/130425132526.htm
Empa. "Ceramic foam cleans up exhaust gases." ScienceDaily. www.sciencedaily.com/releases/2013/04/130425132526.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins