Featured Research

from universities, journals, and other organizations

Bird fossil sheds light on how swift and hummingbird flight came to be

Date:
May 1, 2013
Source:
National Evolutionary Synthesis Center (NESCent)
Summary:
A tiny bird fossil discovered in Wyoming offers clues to the precursors of swift and hummingbird wings. The fossil is unusual in having exceptionally well-preserved feathers, which allowed the researchers to reconstruct the size and shape of the bird's wings in ways not possible with bones alone.

Twelve centimeters from head to tail, E. rowei was an evolutionary precursor to the group that includes today's swifts and hummingbirds.
Credit: Photo contributed by Lance Grande of the Field Museum of Natural History

A tiny bird fossil discovered in Wyoming offers clues to the precursors of swift and hummingbird wings. The fossil is unusual in having exceptionally well-preserved feathers, which allowed the researchers to reconstruct the size and shape of the bird's wings in ways not possible with bones alone.

Researchers spotted the specimen -- the nearly complete skeleton of a bird that would have fit in the palm of your hand and weighed less than an ounce -- while working at the Field Museum of Natural History in Chicago.

The newly discovered bird was named Eocypselus rowei, in honor of John W. Rowe, Chairman of the Field Museum's Board of Trustees.

First collected in southwestern Wyoming in a fossil site known as the Green River Formation, E. rowei lived roughly 50 million years ago, after the dinosaurs disappeared but before the earliest humans came to be.

E. rowei was a tiny bird -- only twelve centimeters from head to tail. Feathers account for more than half of the bird's total wing length.

To find out where the fossil fit in the bird family tree, the researchers compared the specimen to extinct and modern day species. Their analyses suggest that the bird was an evolutionary precursor to the group that includes today's swifts and hummingbirds.

Given the differences in wing shape between these two closely related groups of birds, scientists have puzzled over how swift and hummingbird flight came to be. Finding fossil relatives like this specimen is key to figuring that out, the researchers say.

"This fossil bird represents the closest we've gotten to the point where swifts and hummingbirds went their separate ways," said lead author Daniel Ksepka of the National Evolutionary Synthesis Center in Durham, North Carolina.

Hummingbirds have short wings relative to their bodies, which makes them good at hovering in mid-air. Swifts have super-long wings for gliding and high-speed flight. But the wings of E. rowei were somewhere in between.

"[Based on its wing shape] it probably wasn't a hoverer, like a hummingbird, and it probably wasn't as efficient at fast flight as a swift," Ksepka said.

The shape of the bird's wings, coupled with its tiny size, suggest that the ancestors of today's swifts and hummingbirds got small before each group's unique flight behavior came to be. "Hummingbirds came from small-bodied ancestors, but the ability to hover didn't come to be until later," Ksepka explained.

Closer study of the feathers under a scanning electron microscope revealed that carbon residues in the fossils -- once thought to be traces of bacteria that fed on feathers -- are fossilized melanosomes, tiny cell structures containing melanin pigments that give birds and other animals their color. The findings suggest that the ancient bird was probably black and may have had a glossy or iridescent sheen, like swifts living today. Based on its beak shape it probably ate insects, the researchers say.

The other authors of this study were Julia Clarke, Sterling Nesbitt and Felicia Kulp of the University of Texas at Austin, and Lance Grande of the Field Museum of Natural History.

The results will appear in the May 1 issue of the journal Proceedings of the Royal Society B.


Story Source:

The above story is based on materials provided by National Evolutionary Synthesis Center (NESCent). Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel T. Ksepka, Julia A. Clarke, Sterling J. Nesbitt, Felicia B. Kulp, and Lance Grande. Fossil evidence of wing shape in a stem relative of swifts and hummingbirds (Aves, Pan-Apodiformes). Proceedings of the Royal Society B, 2013 DOI: 10.1098/rspb.2013.0580

Cite This Page:

National Evolutionary Synthesis Center (NESCent). "Bird fossil sheds light on how swift and hummingbird flight came to be." ScienceDaily. ScienceDaily, 1 May 2013. <www.sciencedaily.com/releases/2013/05/130501091839.htm>.
National Evolutionary Synthesis Center (NESCent). (2013, May 1). Bird fossil sheds light on how swift and hummingbird flight came to be. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2013/05/130501091839.htm
National Evolutionary Synthesis Center (NESCent). "Bird fossil sheds light on how swift and hummingbird flight came to be." ScienceDaily. www.sciencedaily.com/releases/2013/05/130501091839.htm (accessed September 14, 2014).

Share This



More Fossils & Ruins News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Museum Traces Fragments of Star-Spangled Banner

Museum Traces Fragments of Star-Spangled Banner

AP (Sep. 12, 2014) As the Star-Spangled Banner celebrates its bicentennial, Smithsonian curators are still uncovering fragments of the original flag that inspired Francis Scott Key's poem. (Sept. 12) Video provided by AP
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com
Meet Spinosaurus, the First-Known Water Dinosaur

Meet Spinosaurus, the First-Known Water Dinosaur

AFP (Sep. 11, 2014) Spinosaurus aegyptiacus was adapted for both land and water, and an exhibit featuring a life-sized model, based on new fossils unearthed in eastern Morocco, opens at the National Geographic Museum in Washington on Friday. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
NatGeo Unveils Life-Size 'Spinosaurus'

NatGeo Unveils Life-Size 'Spinosaurus'

AP (Sep. 11, 2014) Scientists announced new findings about the first ever non-bird dinosaur that could have lived much of its time in the water. National Geographic created a life-size 50-foot model of the prehistoric creature. (Sept. 11) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins