Featured Research

from universities, journals, and other organizations

Global highways of invasive marine species calculated

Date:
May 5, 2013
Source:
University of Bristol
Summary:
New research has mapped the most detailed forecast to date for importing potentially harmful invasive species with the ballast water of cargo ships.

The risk of marine bio-invasion caused by global shipping around the world. The brighter colour and thicker line indicates a higher bio-invasion risk.
Credit: Image by Dr Michael Gastner

Globalisation, with its ever increasing demand for cargo transport, has inadvertently opened the flood gates for a new, silent invasion. New research has mapped the most detailed forecast to date for importing potentially harmful invasive species with the ballast water of cargo ships.

Scientists from the Universities of Bristol, UK, and Oldenburg, Germany, have examined ship traffic data and biological records to assess the risk of future invasions. Their research is published in the latest issue of Ecology Letters.

Animals and plants can hitch a ride on cargo ships, hiding as stowaways in the ballast tanks or clinging to the ship's hull. Upon arrival in a new port, alien species can then wreak havoc in formerly pristine waters. These so-called invasive species can drive native species to extinction, modify whole ecosystems and impact human economy.

Some regions, such as the San Francisco Bay or Chesapeake Bay, have even reported several new exotic species per year. The knock-on effects to fishermen, farmers, tourism and industry create billions of US dollars in damage every year. Conservationists and ship engineers are now trying to prevent the next big invasion. But without knowing when and where it may occur, their possibilities remain limited.

As part of the research project, funded by the Volkswagen Foundation, the team obtained detailed logs of nearly three million ship voyages in 2007 and 2008. Depending on the particular route travelled by each ship, the researchers estimated the probability that a species survives the journey and establishes a population in subsequent ports of call. Although this probability is tiny for any single voyage, the numbers quickly add up because modern cargo traffic volumes are enormous.

Professor Bernd Blasius from the University of Oldenburg and one of the researchers involved in the study, said: "Our model combines information such as shipping routes, ship sizes, temperatures and biogeography to come up with local forecasts of invasion probabilities."

The final tally reveals the hotspots of bioinvasion. Large Asian ports such as Singapore and Hong Kong but also US ports like New York and Long Beach are among the sites of highest invasion probability. These waterways are notoriously busy, but, traffic is not the only important factor.

The North Sea, for example, does not rank among the top endangered regions despite intense shipping. Temperatures here are lower, making it more difficult for alien species to survive. However, arrivals from the other side of the Atlantic pose a serious threat to the North Sea. Most invaders are predicted to originate from the North American east coast.

Hanno Seebens from the University of Oldenburg said: "We also compared our model results to field data. And, indeed, most of the alien species actually do originate from there."

As severe as the risk of future invasions may be, the study also contains a hopeful message. If ship engineers could prevent at least some potential invaders from getting on board, the total invasion risk could be substantially mitigated.

By successfully removing a species from 25 per cent of the ballast tanks arriving at each port (eg with filters, chemicals or radiation), the overall invasion probability decreases by 56 per cent. The reduction is so disproportionately large because the effect of ballast water treatment multiplies at successive stopovers.

Bioinvasion is, as the researchers admit, a complex process, and records of past invasions are far from comprehensive. Facing these uncertainties, they simulated various different scenarios. Interestingly, the key results are comparable for different models, predicting the same hotspots and global highways of bioinvasion. The traffic on the main shipping routes plays the greatest role for the calculation.

Dr Michael Gastner, Lecturer in Engineering Mathematics at the University of Bristol, added: "Ship movements in the past few years are well documented, but there are many unknowns about future trade routes."

For example, the future of the world economy remains uncertain, and Arctic passages may become navigable as a consequence of global warming. Future simulations will also have to take into account which engineering solutions for ballast water treatment will eventually be adopted by port authorities.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. Seebens, M. T. Gastner, B. Blasius. The risk of marine bioinvasion caused by global shipping. Ecology Letters, 2013; DOI: 10.1111/ele.12111

Cite This Page:

University of Bristol. "Global highways of invasive marine species calculated." ScienceDaily. ScienceDaily, 5 May 2013. <www.sciencedaily.com/releases/2013/05/130505073750.htm>.
University of Bristol. (2013, May 5). Global highways of invasive marine species calculated. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2013/05/130505073750.htm
University of Bristol. "Global highways of invasive marine species calculated." ScienceDaily. www.sciencedaily.com/releases/2013/05/130505073750.htm (accessed July 28, 2014).

Share This




More Earth & Climate News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins