Featured Research

from universities, journals, and other organizations

Activity of cancer inducing genes can be controlled by the cell's skeleton

Date:
May 6, 2013
Source:
Instituto Gulbenkian de Ciência (IGC)
Summary:
Cancer is a complex disease, in which cells undergo a series of alterations, including changes in their architecture; an increase in their ability to divide, to survive and to invade new tissues or metastasis. A category of genes, called oncogenes, is critical during cancer progression, as they codify proteins whose activity favors the development of cancer. One of these molecules, Src, is implicated in a large number of human cancers. However, it is still not clear how healthy cells constrain its activity not to become tumorous. Researchers have now identified a novel mechanism by which the activity of Src is limited by the cell's skeleton (cytoskeleton) limiting the development of tumors.

A) Tissue overgrowth due to the presence of higher levels of Scr activity in the fruit fly wing disc (tissue that will generate the wings in the adult fly); B) This overgrowth is restrained due to a higher expression of the “tuner” actin Capping protein.
Credit: Beatriz Gárcia Fernandéz, IGC

Cancer is a complex disease, in which cells undergo a series of alterations, including changes in their architecture; an increase in their ability to divide, to survive and to invade new tissues or metastasis. A category of genes, called oncogenes, is critical during cancer progression, as they codify proteins whose activity favours the development of cancer. One of these molecules, Src, is implicated in a large number of human cancers. However, it is still not clear how healthy cells constrain its activity not to become tumorous.

Related Articles


In the latest issue of the journal Oncogene, Florence Janody and her team at the Instituto Gulbenkian de Ciência (IGC, Portugal), identified a novel mechanism by which the activity of Src is limited by the cell's skeleton (cytoskeleton) limiting the development of tumours.

Using the fruit fly, Drosophila melanogaster, as a model, Florence Janody and her team were able to stop the tumour development induced by the high activity of Src through the genetic manipulation of the cytoskeleton in fly tissues. A major component of the cytoskeleton, the actin protein, form cables that crisscross the cell, creating a network, where molecules can move, inside the cell. These cables are constantly being elongated and shortened at their ends in a process tuned by molecules called actin-capping proteins.

Florence Janody´s team showed that the development of tumours is stopped in the presence of high levels of the actin Capping Protein. This "tuner" restrains the activity of proteins that are usually activated by high levels of Src. Although the precise molecular mechanism is still unknown, the hypothesis raised by these scientists is that the "tuner" creates a tension in the cables of the cytoskeleton that impedes the action of these proteins. Conversely, the activity of Src is higher when the levels of the actin Capping Protein are lower, as the proteins activated by Src are able to escape the blocking effect of the network and act in the cell, resulting in the development of tumours. Thus, when the cytoskeleton network is not tightly regulated, the activity of oncogenes such as Src is not trapped and tumour development is observed.

Florence Janody says: "The cytoskeleton works as a "barbwire" network. The winner of the competition between molecules of the "barbwire" network and the Src oncogene, which fights against it, will determine whether the cell will stay healthy or become a cancer cell.

Beatriz García Fernández and Barbara Jezowska, first authors of this work added: "Our work suggests that the appearance of mutations in molecules that regulate the skeleton may play a significant role in inducing cancer development during the early stages of the disease by releasing the activity of oncogenes."

Src was the first oncogene described in the 1950s as capable to induce cancer. This discovery was awarded with the Nobel Prize in Physiology and Medicine in 1989.

This study was carried out at the IGC and was funded by Fundação para a Ciência e a Tecnologia (Portugal).


Story Source:

The above story is based on materials provided by Instituto Gulbenkian de Ciência (IGC). Note: Materials may be edited for content and length.


Journal Reference:

  1. B G Fernández, B Jezowska, F Janody. Drosophila actin-Capping Protein limits JNK activation by the Src proto-oncogene. Oncogene, 2013; DOI: 10.1038/onc.2013.155

Cite This Page:

Instituto Gulbenkian de Ciência (IGC). "Activity of cancer inducing genes can be controlled by the cell's skeleton." ScienceDaily. ScienceDaily, 6 May 2013. <www.sciencedaily.com/releases/2013/05/130506095103.htm>.
Instituto Gulbenkian de Ciência (IGC). (2013, May 6). Activity of cancer inducing genes can be controlled by the cell's skeleton. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2013/05/130506095103.htm
Instituto Gulbenkian de Ciência (IGC). "Activity of cancer inducing genes can be controlled by the cell's skeleton." ScienceDaily. www.sciencedaily.com/releases/2013/05/130506095103.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins