Featured Research

from universities, journals, and other organizations

And the beat goes on...: The reliable heartbeat of hibernators

Date:
May 7, 2013
Source:
Veterinärmedizinische Universität Wien
Summary:
At the current temperatures, all hibernators have probably emerged from their winter hibernation and are enjoying the warm weather. However, this is quite different during the cold season. Many small mammals such as marmots, hedgehogs, bats and some hamsters, and even some birds have a particular skill: they can induce a state of inactivity and reduced metabolic rate to significantly lower their energy consumption when food becomes limited and ambient temperatures drop.

At the current temperatures, all hibernators have probably emerged from their winter hibernation and are enjoying the warm weather. However, this is quite different during the cold season. Many small mammals such as marmots, hedgehogs, bats and some hamsters, and even some birds have a particular skill: they can induce a state of inactivity and reduced metabolic rate to significantly lower their energy consumption when food becomes limited and ambient temperatures drop. Fat depots accumulated before the winter, are consumed during hibernation.

Related Articles


During this state, known as torpor, their heartbeat and breathing slow down and the body temperature can approach 0°C. To date, the mechanisms underlying the maintenance of cardiac function at low body temperatures are poorly understood. Now, scientists at the Research Institute of Wildlife Ecology at the University of Veterinary Medicine, Vienna, together with colleagues at the University of Groningen in the Netherlands, have found that certain omega-3 and omega-6 fatty acids regulate the cardiac function and hence hibernation. These fatty acids control the process of maintaining a regular heartbeat, achieving lower body temperatures during hibernation and thereby ensuring the hibernator's survival.

Fatty acids regulate hibernation

In the present study Sylvain Giroud and colleagues were able to demonstrate that a specific omega-6 fatty acid, Linoleic acid (LA), regulates cardiac function and ensures a regular heartbeat during hibernation. The scientists found that hibernators show higher levels of LA in their heart tissue compared to animals in a non-hibernating state. The scientists determined the cardiac fatty acid composition of hibernating and non-hibernating Syrian hamsters (Mesocricetus auratus). They found that hamsters had higher LA levels during the cooling phase and in deep hibernation than during the active period. Additionally, the researchers investigated a specific omega-3 fatty acid, Docosahexaenoic Acid (DHA), which was significantly lower in the examined animals during hibernation. The scientists concluded that both high levels of LA and low levels of DHA are essential for hibernation. According to the study, the amounts of these specific omega-6 and -3 fatty acids in the heart can be regulated up and down, depending on the season. In summer, unlike during hibernation, high levels of DHA protect the heart from overexertion.

Activity of calcium pump in the heart

Certain fatty acids can influence the activity of so-called calcium pumps. These pumps are responsible for proper muscle contractions in the body. The researchers were able to show that animals in hibernation have higher amounts of LA in their hearts. In turn, these fatty acids activate a specific calcium pump (SERCA), thus ensuring proper cardiac contractions and the survival of hibernators at low body temperatures. A rhythmic heartbeat is dependent upon the activity of this pump. In non-hibernating animals, low temperatures can hamper the operation of the pump and lead to severe cardiac arrhythmias that can potentially lead to cardiac arrest due to an overload of calcium in the heart. High levels of LA in hibernating animals ensure a sufficiently quick calcium transport, enabling the heart to keep beating at regular intervals.

Nutrition affects hibernation

Omega-3 and omega-6 fatty acids are essential nutrients and must be obtained from food. Although the body regulates the level of fatty acids in each tissue, food supply plays an important role for hibernating animals. It is known, for instance, that wild marmots actively select plants that contain high amounts of omega-6 fatty acids during the fall to prepare for hibernation. In the present study, all animals were fed continuously with the same amounts of various fatty acids. Nevertheless, the measured amounts in the heart tissue varied, according to the physiological stage of the hamsters. As Giroud explains, "The fact that these effects of fatty acids on the calcium pump in the heart and hence on temperatures during hibernation can be detected even in animals fed identical food lead us to think that the effects of the cardiac fatty acid composition may be even stronger in free-living hibernators exposed to higher variability in food resources, or with limited access to essential fatty acids."


Story Source:

The above story is based on materials provided by Veterinärmedizinische Universität Wien. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sylvain Giroud, Carla Frare, Arjen Strijkstra, Ate Boerema, Walter Arnold, Thomas Ruf. Membrane Phospholipid Fatty Acid Composition Regulates Cardiac SERCA Activity in a Hibernator, the Syrian Hamster (Mesocricetus auratus). PLoS ONE, 2013; 8 (5): e63111 DOI: 10.1371/journal.pone.0063111

Cite This Page:

Veterinärmedizinische Universität Wien. "And the beat goes on...: The reliable heartbeat of hibernators." ScienceDaily. ScienceDaily, 7 May 2013. <www.sciencedaily.com/releases/2013/05/130507060848.htm>.
Veterinärmedizinische Universität Wien. (2013, May 7). And the beat goes on...: The reliable heartbeat of hibernators. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2013/05/130507060848.htm
Veterinärmedizinische Universität Wien. "And the beat goes on...: The reliable heartbeat of hibernators." ScienceDaily. www.sciencedaily.com/releases/2013/05/130507060848.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins