Featured Research

from universities, journals, and other organizations

A cautionary tale on genome-sequencing diagnostics for rare diseases

Date:
May 10, 2013
Source:
Sanford-Burnham Medical Research Institute
Summary:
Researchers have discover that several children born with rare diseases called congenital disorders of glycosylation don't contain the mutation in every cell type -- raising new questions about inheritance, genomic sequencing, and diagnostics.

Children born with rare, inherited conditions known as Congenital Disorders of Glycosylation, or CDG, have mutations in one of the many enzymes the body uses to decorate its proteins and cells with sugars. Properly diagnosing a child with CDG and pinpointing the exact sugar gene that's mutated can be a huge relief for parents -- they better understand what they're dealing with and doctors can sometimes use that information to develop a therapeutic approach. Whole-exome sequencing, an abbreviated form of whole-genome sequencing, is increasingly used as a diagnostic for CDG.

But researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) recently discovered three children with CDG who are mosaics -- only some cells in some tissues have the mutation. For that reason, standard exome sequencing initially missed their mutations, highlighting the technique's diagnostic limitations in some rare cases. These findings were published April 4 in the American Journal of Human Genetics.

"This study was one surprise after another," said Hudson Freeze, Ph.D., director of Sanford-Burnham's Genetic Disease Program and senior author of the study. "What we learned is that you have to be careful -- you can't simply trust that you'll get all the answers from gene sequencing alone."

Searching for a rare disease mutation

Complicated arrangements of sugar molecules decorate almost every protein and cell in the body. These sugars are crucial for cellular growth, communication, and many other processes. As a result of a mutation in an enzyme that assembles these sugars, children with CDG experience a wide variety of symptoms, including intellectual disability, digestive problems, seizures, and low blood sugar.

To diagnose CDG, researchers will test the sugar arrangements on a common protein called transferrin. Increasingly, they'll also look for known CDG-related mutations by whole-exome sequencing, a technique that sequences only the small portion of the genome that encodes proteins. The patients are typically three to five years old.

A cautionary tale for genomic diagnostics

In this study, the researchers observed different proportions and representations of sugar arrangements depending on which tissues were examined. In other words, these children have the first demonstrated cases of CDG "mosaicism" -- their mutations only appear in some cell types throughout the body, not all. As a result, the usual diagnostic tests, like whole-exome sequencing, missed the mutations. It was only when Freeze's team took a closer look, examining proteins by hand using biochemical methods, did they identify the CDG mutations in these three children.

The team then went back to the three original children and examined their transferrin again. Surprisingly, these readings, which had previously shown abnormalities, had become normal. Freeze and his team believe this is because mutated cells in the children's livers died and were replaced by normal cells over time.

"If the transferrin test hadn't been performed early on for these children, we never would've picked up these cases of CDG. We got lucky in this case, but it just shows that we can't rely on any one test by itself in isolation," Freeze said.


Story Source:

The above story is based on materials provided by Sanford-Burnham Medical Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. BobbyG. Ng, KatiJ. Buckingham, Kimiyo Raymond, Martin Kircher, EmilyH. Turner, Miao He, JoshuaD. Smith, Alexey Eroshkin, Marta Szybowska, MarieE. Losfeld, JessicaX. Chong, Mariya Kozenko, Chumei Li, MarcC. Patterson, RodneyD. Gilbert, DeborahA. Nickerson, Jay Shendure, MichaelJ. Bamshad, HudsonH. Freeze. Mosaicism of the UDP-Galactose Transporter SLC35A2 Causes a Congenital Disorder of Glycosylation. The American Journal of Human Genetics, 2013; 92 (4): 632 DOI: 10.1016/j.ajhg.2013.03.012

Cite This Page:

Sanford-Burnham Medical Research Institute. "A cautionary tale on genome-sequencing diagnostics for rare diseases." ScienceDaily. ScienceDaily, 10 May 2013. <www.sciencedaily.com/releases/2013/05/130510075626.htm>.
Sanford-Burnham Medical Research Institute. (2013, May 10). A cautionary tale on genome-sequencing diagnostics for rare diseases. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2013/05/130510075626.htm
Sanford-Burnham Medical Research Institute. "A cautionary tale on genome-sequencing diagnostics for rare diseases." ScienceDaily. www.sciencedaily.com/releases/2013/05/130510075626.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins