Science News

... from universities, journals, and other research organizations

Tropical Upper Atmosphere 'Fingerprint' of Global Warming

May 22, 2013 — In the tropics at heights more than 10 miles above the surface, the prevailing winds alternate between strong easterlies and strong westerlies roughly every other year. This slow heartbeat in the tropical upper atmosphere, referred to as the quasibiennial oscillation (QBO), impacts the winds and chemical composition of the global atmosphere and even the climate at Earth's surface.


Share This:

The pulse of the QBO has weakened substantially at some altitudes over the last six decades, according to a new study by scientists at the International Pacific Research Center, University of Hawaii at Manoa, and the Japan Agency for Marine-Earth Science and Technology. The decline in the strength of the QBO is consistent with computer model projections of how the upper atmosphere responds to global warming induced by increased greenhouse gas concentrations. The study appears in the May 23, 2013, online issue of Nature.

"This is the first demonstration of a systematic long-term trend in the observed QBO record," says co-author Kevin Hamilton and Director of the IPRC. "We see a similar trend in computer models of the global atmosphere when they simulate the last century using the historical changes of greenhouse gases. So this change in upper atmospheric behavior can be considered part of the "fingerprint" of the expected global warming signal in the climate system."

The global atmospheric circulation is characterized by air slowly rising in the tropics into the upper atmosphere and sinking at higher latitudes. While this circulation is so slow that a blob of air may take decades to travel to the upper atmosphere, it impacts the chemical composition of the global atmosphere because many chemical properties are very different in the lower and upper atmosphere layers. Although computer models used to project climate changes from increasing greenhouse gas concentrations consistently simulate an increasing upward airflow in the tropics with global warming, this flow cannot be directly observed.

"We demonstrated that the mean upward-air motion suppresses the strength of the QBO winds in the models and thus interpret our observed weakened QBO trend as confirmation that the mean upward velocity in the tropics has indeed been increasing," notes Hamilton.

Hamilton provides an example of why the upward airflow is so significant: "The manufacture of ozone-destroying chemicals such as the freon compounds used in the past in spray cans and in refrigerators has been largely banned for over 20 years. These chemicals, however, remain in the atmosphere for many decades. They are slowly flushed out of the lower atmosphere into the upper atmosphere where they are destroyed. Stronger mean upward airflow transports these chemicals more quickly into the upper atmosphere, and the ozone layer will recover more quickly to its natural state before the introduction of man-made freon compounds."

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

|

Story Source:

The above story is based on materials provided by University of Hawaii ‑ SOEST, via EurekAlert!, a service of AAAS.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Yoshio Kawatani, Kevin Hamilton. Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling. Nature, 2013; 497 (7450): 478 DOI: 10.1038/nature12140
APA

MLA

Note: If no author is given, the source is cited instead.

Search ScienceDaily

Number of stories in archives: 140,690

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily's archives for related news topics,
the latest news stories, reference articles, science videos, images, and books.

Recommend ScienceDaily on Facebook, Twitter, and Google:

Other social bookmarking and sharing services:

|

 
Interested in ad-free access? If you'd like to read ScienceDaily without ads, let us know!
  more breaking science news

Social Networks


Follow ScienceDaily on Facebook, Twitter,
and Google:

Recommend ScienceDaily on Facebook, Twitter, and Google +1:

Other social bookmarking and sharing tools:

|

Breaking News

... from NewsDaily.com

  • more science news

In Other News ...

  • more top news

Science Video News


Global Warming Equals Stronger Hurricanes

Climate change experts studying hurricanes documented a 35-year warming trend in ocean surface temperature and linked it to larger hurricanes. The. ...  > full story

Strange Science News

 

Free Subscriptions

... from ScienceDaily

Get the latest science news with our free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Feedback

... we want to hear from you!

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?