Featured Research

from universities, journals, and other organizations

Discarded immune cells induce the relocation of stem cells

Date:
May 23, 2013
Source:
Centro Nacional de Investigaciones Cardiovasculares
Summary:
The study reveals a surprising coordination between two fundamental body systems, the immune and the hematopoietic. The study has implications for the understanding of metastasis, because malignant stem cells involved in tumor formation could take advantage of this mechanism.

CNIC researchers have discovered that the daily clearance of neutrophils from the body stimulates the release of hematopoietic stem cells from the bone marrow into the bloodstream, according to a report published today in the journal Cell.

Related Articles


Neutrophils are leukocytes (white blood cells) that defend the body against attack from bacteria and other disease organisms. To perform their function, these cells release toxic substances when they come into contact with microorganisms. However, release of these substances in the wrong place by damaged neutrophils can result in severe injury to blood vessels and tissues. Evolution appears to have resolved this conflict by ensuring that neutrophils are renewed much more rapidly than most other cells in the body: approximately 1011 neutrophils are eliminated every day and an equivalent number of stem cells are released into the bloodstream. This in turn generates a second problem: what to do with all these cells that have to be eliminated.

Dr. Andrés Hidalgo and his team in the Department of Epidemiology, Atherosclerosis and Cardiovascular Imaging, led by Dr. Valentín Fuster, have discovered the function of these neutrophils expelled every day by the body.

Graduate student María Casanova Acebes (Universidad Autónoma de Madrid), found that when additional apoptotic neutrophils were injected into mice, there was an increase in the number of circulating hematopoietic stem cells, the cells that generate all blood cells.

Using a wide variety of experimental approaches, including imaging assays, pharmacological treatments and genetic analysis, the team showed that when neutrophils in the blood get old, they migrate to the bone marrow to be eliminated by specialized phagocytotic cells called macrophages. The act of phagocytosing the neutrophils alters these macrophages' genetic properties and functions, and these changes in turn alter the function of specialized cells whose job it is to retain hematopoietic stem cells in the bone marrow. "As a consequence, the stem cells are released into the blood," explains María Casanova, first author of the study.

According to Dr. Hidalgo, "Key questions that arise from our study relate to the role of the hematopoietic stems cells expelled from the bone marrow, and how the elimination of neutrophils might affect other important stem cell populations, for example those that produce tumors."

The research also reveals that the aging of neutrophils follows a day/night, or circadian, cycle, suggesting possible implications for disease processes -- for instance heart attack -- that occur more frequently at certain times of day.

"Our study shows that stem cells are affected by day/night cycles thanks to this cell recycling. It is possible that the malign stem cells that cause cancer use this mechanism to relocate, for example during metastasis," Hidalgo emphasizes.

But this finding could have more direct implications for cardiovascular health. According to the authors, the daily changes in the function of neutrophils could be responsible for the tendency of acute cardiovascular and inflammatory events, such as heart attack, sepsis or stroke, to occur at certain times of day.

Dr. Hidalgo concludes, "Given that this new discovery describes fundamental processes in the body that were unknown before, it will now be possible to interpret the alterations to certain physiological patterns that occur in many diseases."


Story Source:

The above story is based on materials provided by Centro Nacional de Investigaciones Cardiovasculares. Note: Materials may be edited for content and length.


Journal Reference:

  1. María Casanova-Acebes, Christophe Pitaval, Linnea A. Weiss, César Nombela-Arrieta, Raphaël Chèvre, Noelia A-González, Yuya Kunisaki, Dachuan Zhang, Nico van Rooijen, Leslie E. Silberstein, Christian Weber, Takashi Nagasawa, Paul S. Frenette, Antonio Castrillo, Andrés Hidalgo. Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance. Cell, 2013; 153 (5): 1025 DOI: 10.1016/j.cell.2013.04.040

Cite This Page:

Centro Nacional de Investigaciones Cardiovasculares. "Discarded immune cells induce the relocation of stem cells." ScienceDaily. ScienceDaily, 23 May 2013. <www.sciencedaily.com/releases/2013/05/130523143539.htm>.
Centro Nacional de Investigaciones Cardiovasculares. (2013, May 23). Discarded immune cells induce the relocation of stem cells. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2013/05/130523143539.htm
Centro Nacional de Investigaciones Cardiovasculares. "Discarded immune cells induce the relocation of stem cells." ScienceDaily. www.sciencedaily.com/releases/2013/05/130523143539.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) — The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) — The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) — New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) — Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins