Featured Research

from universities, journals, and other organizations

How do plants grow toward the light? Scientists explain mechanism behind phototropism

Date:
May 28, 2013
Source:
Technische Universitaet Muenchen
Summary:
Plants have developed a number of strategies to capture the maximum amount of sunlight through their leaves. As we know from looking at plants on a windowsill, they grow toward the sunlight to be able to generate energy by photosynthesis. Now scientists have provided definitive insights into the driving force behind this movement -- the plant hormone auxin.

The plant hormone auxin is responsible for a plant's ability to grow towards the light.
Credit: Photo: C. Schwechheimer/TUM

Plants have developed a number of strategies to capture the maximum amount of sunlight through their leaves. As we know from looking at plants on a windowsill, they grow toward the sunlight to be able to generate energy by photosynthesis. Now an international team of scientists has provided definitive insights into the driving force behind this movement -- the plant hormone auxin.

The growth of plants toward light is particularly important at the beginning of their lifecycle. Many seeds germinate in the soil and get their nutrition in the dark from their limited reserves of starch and lipids. Reaching for the surface, the seedlings rapidly grow upwards against the gravitational pull, which provides an initial clue for orientation. With the help of highly sensitive light-sensing proteins, they find the shortest route to the sunlight -- and are even able to bend in the direction of the light source.

"Even mature plants bend toward the strongest light. They do this by elongating the cells of the stem on the side that is farthest from the light. This type of light-oriented growth is called phototropism," explains Prof. Claus Schwechheimer from the Chair of Plant Systems Biology at the Technische Universität München (TUM).

Transporters move plant hormone to target site

The substance responsible for cell elongation is auxin. This phytohormone is formed in cells at the tip of the shoot and is then passed from cell to cell. As such, the hormone is shuttled through many cells of the plant before it reaches its final destination. "Export and import proteins push the auxin out of one cell into the intercellular space and then into the next cell and so on until the auxin eventually reaches its target site," outlines Schwechheimer.

The most important proteins in this process are the export proteins known as "PINs," which regulate the direction of the auxin flow. As Schwechheimer's team was able to demonstrate, these PINs do not function on their own: "They require the signal of the D6PK protein kinase," Schwechheimer continues. "The kinase enzyme modifies the PINs through the transfer of phosphate groups -- thus activating them as auxin transporters."

What is the role of auxin?

The movements of plants were first described comprehensively by Charles Darwin in 1880 in his seminal work "The power of movement in plants." The theory that the plant hormone auxin could play a role in plants bending toward a light source was first proposed in 1937 by the Dutch researcher Frits Went in the Cholodny-Went model.

Even though many subsequent observations have supported this model, up to now there has been no definite proof that auxin is in fact involved in this process. Prof. Christian Fankhauser from UNIL (Université de Lausanne) in Switzerland explains why: "Up to now, all plants with a known defect in auxin transport showed a normal phototropism. How then could auxin transport be essential for this process?"

Auxin regulation model confirmed

The TUM team, in cooperation with their colleagues at UNIL, have found the answer to this question. The Swiss researchers were able to inactivate several PIN transporters in a plant simultaneously. And for their part, the TUM scientists managed to demonstrate the function of the D6PK protein kinase.

It was found that when several of the PIN and kinase components were missing, plant growth was completely unresponsive to the light signals that trigger phototropism. The auxin transport mechanism in these mutant plants was severely impaired: The plants grew upwards, away from the gravitational pull, irrespective of the light source. This helped the scientists prove for the first time that the hormone auxin definitely is the substance that drives phototropism.


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. C. Willige, S. Ahlers, M. Zourelidou, I. C. R. Barbosa, E. Demarsy, M. Trevisan, P. A. Davis, M. R. G. Roelfsema, R. Hangarter, C. Fankhauser, C. Schwechheimer. D6PK AGCVIII Kinases Are Required for Auxin Transport and Phototropic Hypocotyl Bending in Arabidopsis. The Plant Cell, 2013; DOI: 10.1105/tpc.113.111484

Cite This Page:

Technische Universitaet Muenchen. "How do plants grow toward the light? Scientists explain mechanism behind phototropism." ScienceDaily. ScienceDaily, 28 May 2013. <www.sciencedaily.com/releases/2013/05/130528105946.htm>.
Technische Universitaet Muenchen. (2013, May 28). How do plants grow toward the light? Scientists explain mechanism behind phototropism. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2013/05/130528105946.htm
Technische Universitaet Muenchen. "How do plants grow toward the light? Scientists explain mechanism behind phototropism." ScienceDaily. www.sciencedaily.com/releases/2013/05/130528105946.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) — West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) — The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) — A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins