Featured Research

from universities, journals, and other organizations

Improving 'crop per drop' could boost global food security and water sustainability

Date:
May 29, 2013
Source:
University of Minnesota
Summary:
Improvements in crop water productivity -- the amount of food produced per unit of water consumed -- have the potential to improve both food security and water sustainability in many parts of the world, according to a new study.

Improvements in crop water productivity -- the amount of food produced per unit of water consumed -- have the potential to improve both food security and water sustainability in many parts of the world, according to a study published online in Environmental Research Letters May 29 by scientists with the University of Minnesota's Institute on the Environment (IonE) and the Institute of Crop Science and Resource Conservation (INRES) at the University of Bonn, Germany.

Related Articles


Led by IonE postdoctoral research scholar Kate A. Brauman, the research team analyzed crop production, water use and crop water productivity by climatic zone for 16 staple food crops: wheat, maize, rice, barley, rye, millet, sorghum, soybean, sunflower, potato, cassava, sugarcane, sugar beet, oil palm, rapeseed (canola) and groundnut (peanut). Together these crops constitute 56 percent of global crop production by tonnage, 65 percent of crop water consumption, and 68 percent of all cropland by area. The study is the first of its kind to look at water productivity for this many crops at a global scale.

The wide range of variation in crop water productivity in places that have similar climates means that there are lots of opportunities for improving the trade-off between food and water. And the implications of doing so are substantial: The researchers calculated that in drier regions, bringing up the very lowest performers to just the 20th percentile could increase annual production on rain-fed cropland enough to provide food for an estimated 110 million people without increasing water use or using additional cropland. On irrigated cropland, water consumption could be reduced enough to meet the annual domestic water demands of nearly 1.4 billion people while maintaining current production.

"Since crop production consumes more freshwater than any other human activity on the planet, the study has significant implications for addressing the twin challenges of water stress and food insecurity," says Brauman.

For example, if low crop water productivity in precipitation-limited regions were raised to the 20th percentile of water productivity, specific to particular crops and climates, total rain-fed food production in Africa could be increased by more than 10 percent without exploiting additional cropland. Similar improvements in crop water productivity on irrigated cropland could reduce total water consumption some 8-15 percent in precipitation-limited regions of Africa, Asia, Europe and South America.

Because the study is global in scope, it is able to identify potential locations for interventions, crops to pay attention to, and opportunities for the biggest improvements in crop water management. Specific solutions for improving crop per drop will vary by location and climatic zone over time, however.


Story Source:

The above story is based on materials provided by University of Minnesota. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kate A Brauman, Stefan Siebert, Jonathan A Foley. Improvements in crop water productivity increase water sustainability and food security—a global analysis. Environmental Research Letters, 2013; 8 (2): 024030 DOI: 10.1088/1748-9326/8/2/024030

Cite This Page:

University of Minnesota. "Improving 'crop per drop' could boost global food security and water sustainability." ScienceDaily. ScienceDaily, 29 May 2013. <www.sciencedaily.com/releases/2013/05/130529144325.htm>.
University of Minnesota. (2013, May 29). Improving 'crop per drop' could boost global food security and water sustainability. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2013/05/130529144325.htm
University of Minnesota. "Improving 'crop per drop' could boost global food security and water sustainability." ScienceDaily. www.sciencedaily.com/releases/2013/05/130529144325.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins