Featured Research

from universities, journals, and other organizations

Microbial changes regulate function of entire ecosystems

Date:
May 31, 2013
Source:
American Society for Microbiology
Summary:
A major question in ecology has centered on the role of microbes in regulating ecosystem function. Now scientists show how changes in the populations of methanotrophic bacteria can have consequences for methane mitigation at ecosystem levels.

A major question in ecology has centered on the role of microbes in regulating ecosystem function. Now, in research published ahead of print in the journal Applied and Environmental Microbiology, Brajesh Singh of the University of Western Sydney, Australia, and collaborators show how changes in the populations of methanotrophic bacteria can have consequences for methane mitigation at ecosystem levels.

Related Articles


"Ecological theories developed for macro-ecology can explain the microbial regulation of the methane cycle," says Singh.

In the study, as grasslands, bogs, and moors became forested, a group of type II methanotrophic bacterium, known as USC alpha, became dominant on all three land use types, replacing other methanotrophic microbes, and oxidizing, thus mitigating methane, a powerful greenhouse gas, explains Singh. "The change happened because we changed the niches of the microbial community."

The pre-eminence of USC alpha bacteria in this process demonstrates that the so-called "selection hypothesis" from macro-ecology "explains the changes the investigators saw in the soil functions of their land-use types," says Singh. The selection hypothesis states that a small number of key species, rather than all species present determine key functions in ecosystems. "This knowledge could provide the basis for incorporation of microbial data into predictive models, as has been done for plant communities," he says.

"Evidence of microbial regulation of the biogeochemical cycle provides the basis for including microbial data in predictive models studying the effects of global changes," says Singh.

Singh warns that one should not take the results to mean that biodiversity is not important. Without microbial biodiversity, the raw materials -- different microbial species with different capabilities -- for adapting to changes in the environment would be unavailable, he says.


Story Source:

The above story is based on materials provided by American Society for Microbiology. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Nazaries, Y. Pan, L. Bodrossy, E. M. Baggs, P. Millard, J. C. Murrell, B. K. Singh. Microbial regulation of biogeochemical cycles: evidence from a study on methane flux and land-use change. Applied and Environmental Microbiology, 2013; DOI: 10.1128/AEM.00095-13

Cite This Page:

American Society for Microbiology. "Microbial changes regulate function of entire ecosystems." ScienceDaily. ScienceDaily, 31 May 2013. <www.sciencedaily.com/releases/2013/05/130531151349.htm>.
American Society for Microbiology. (2013, May 31). Microbial changes regulate function of entire ecosystems. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2013/05/130531151349.htm
American Society for Microbiology. "Microbial changes regulate function of entire ecosystems." ScienceDaily. www.sciencedaily.com/releases/2013/05/130531151349.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins