Featured Research

from universities, journals, and other organizations

Common control patterns govern swimming animals

Date:
June 4, 2013
Source:
Georgia Institute of Technology
Summary:
What do swimmers like trout, eels and sandfish lizards have in common? According to a new study, the similar timing patterns that these animals use to contract their muscles and produce undulatory swimming motions can be explained using a simple model.

Sandfish lizards move rapidly underground through desert sand. Researchers studied how the animal moves and have developed a new model of this undulatory swimming.
Credit: Gary Meek

What do swimmers like trout, eels and sandfish lizards have in common? According to a new study, the similar timing patterns that these animals use to contract their muscles and produce undulatory swimming motions can be explained using a simple model. Scientists have now applied the new model to understand the connection between electrical signals and body movement in the sandfish.

Related Articles


Most swimming creatures rely on an undulating pattern of body movement to propel themselves through fluids. Though differences in body flexibility may lead to different swimming styles, scientists have found "neuromechanical phase lags" in nearly all swimmers. These lags are characterized by a wave of muscle activation that travels faster down the body than the wave of body curvature.

A study of the sandfish lizard -- which "swims" through sand -- led to development of the new model, which researchers believe could also be used to study other swimming animals. Beyond assisting the study of locomotion in a wide range of animals, the findings could also help researchers design efficient swimming robots.

"A graduate student in our group, Yang Ding, who is now at the University of Southern California, was able to develop a theory that could explain the kinematics of how this animal swims as well as the timing of the nervous system control signals," said Daniel Goldman, an associate professor in the School of Physics at the Georgia Institute of Technology. "For animals swimming in fluids using an undulating movement, there are basic physical constraints on how they must activate their muscles. We think we have uncovered an important mechanism that governs this kind of swimming."

The research was reported June 3 in the early edition of the journal Proceedings of the National Academy of Sciences. It was sponsored by the National Science Foundation's Physics of Living Systems program, the Micro Autonomous Systems and Technology (MAST) program of the Army Research Office, and the Burroughs Wellcome Fund.

Undulatory locomotion is a gait in which thrust is produced in the opposite direction from a traveling wave of body bending. Because it is so commonly used by animals, this mode of locomotion has been widely used for studying the neuromechanical principles of movement.

Sarah Sharpe, the paper's second author and a graduate student in Georgia Tech's Interdisciplinary Bioengineering Program, led laboratory experiments studying undulatory swimming in sandfish lizards. She used X-ray imaging to visualize how the animals swam through grandular media that was composed of tiny glass spheres.

At the same time their swimming movements were being tracked, a set of four hair-thin electrodes implanted in the lizards' bodies were providing information on when their muscles were activated. The two information sources allowed the researchers to compare the electrical muscle activity to the lizards' body motion.

"The lizards propagate a wave of muscle activations, contracting the muscles close to their heads first, then the muscles at the midpoint of their body, then their tail," said Sharpe. "They send a wave of muscle of contraction down their bodies, which creates a wave of curvature that allows them to swim. This wave of activation travels faster than the wave of curvature down the body, resulting in different timing relationships, known as phase differences, between muscle contracts and bending along the body."

Sand acts like a frictional fluid as the sandfish swims through it. However, a sandfish swimming through sand is simpler to model than a fish swimming through water because the sand lacks the vortices and other complex behavior of water -- and the friction of the sand eliminates inertia.

"Theoretically, it is difficult to calculate all of the forces acting on a fish or an eel swimming in a real fluid," said Goldman. "But for a sandfish, you can calculate pretty much everything."

The relative simplicity of the system allowed the research team -- which also included Georgia Tech professor Kurt Wiesenfeld -- to develop a simple model showing how the muscle activation relates to motion. The model showed that combining synchronized torques from distant points in the lizards' bodies with local traveling torques is what creates the neuromechanical phase lag.

"This is one of the simplest, if not the simplest, models of swimming that reproduces the neuromechanical phase lag phenomenon," Sharpe said. "All we really had to pay attention to was the external forces acting on an animal's body. We realized that this timing relationship would emerge for any undulatory animal with distributed forces along its body. Understanding this concept can be used as the foundation to begin understanding timing patterns in all other swimmers."

The sandfish swims using a simple single-period sinusoidal wave with constant amplitude. A key finding that facilitated the model's development was that the sandfish's body is extremely flexible, allowing internal forces -- body stiffness -- to be ignored.

"This animal turns out to be like a little limp noodle," said Goldman. "Having that result in the theory makes everything else pop out."

The model shows that the waveform used by the sandfish should allow it to swim the farthest with the least expenditure of energy. Swimming robots adopting the same waveform should therefore be able to maximize their range.

Goldman and his colleagues have been studying the sandfish, a native of the northern African desert, for more than six years.

"Sandfish are among the champions of all sand diggers, swimmers and burrowers," said Goldman. "This lizard has provided us with an interesting entry point into swimming because its environment is surprisingly simple and behavior is simple. It turns out that this little sand-dweller may be able to tell us things about swimming more generally."

This research has been supported by the National Science Foundation Physics of Living Systems (PoLS) under grants PHY-0749991 and PHY-1150760, by the U.S. Army Research Laboratory's (ARL) Micro Autonomous Systems and Technology (MAST) Program under cooperative agreement W911NF-11-1-0514, and by the Burroughs Wellcome Fund Career Award.


Story Source:

The above story is based on materials provided by Georgia Institute of Technology. The original article was written by John Toon. Note: Materials may be edited for content and length.


Journal Reference:

  1. Y. Ding, S. S. Sharpe, K. Wiesenfeld, D. I. Goldman. Emergence of the advancing neuromechanical phase in a resistive force dominated medium. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1302844110

Cite This Page:

Georgia Institute of Technology. "Common control patterns govern swimming animals." ScienceDaily. ScienceDaily, 4 June 2013. <www.sciencedaily.com/releases/2013/06/130604153325.htm>.
Georgia Institute of Technology. (2013, June 4). Common control patterns govern swimming animals. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/06/130604153325.htm
Georgia Institute of Technology. "Common control patterns govern swimming animals." ScienceDaily. www.sciencedaily.com/releases/2013/06/130604153325.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins