Featured Research

from universities, journals, and other organizations

Scientists discover how HIV kills immune cells; Findings have implications for HIV treatment

Date:
June 5, 2013
Source:
NIH/National Institute of Allergy and Infectious Diseases
Summary:
Untreated HIV infection destroys a person's immune system by killing infection-fighting cells, but precisely when and how HIV wreaks this destruction has been a mystery until now. New research reveals how HIV triggers a signal telling an infected immune cell to die. This finding has implications for preserving the immune systems of HIV-infected individuals.

Scanning electron micrograph of HIV particles infecting a human T cell.
Credit: National Institute of Allergy and Infectious Diseases (NIAID)

Untreated HIV infection destroys a person's immune system by killing infection-fighting cells, but precisely when and how HIV wreaks this destruction has been a mystery until now. New research by scientists at the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, reveals how HIV triggers a signal telling an infected immune cell to die. This finding has implications for preserving the immune systems of HIV-infected individuals.

HIV replicates inside infection-fighting human immune cells called CD4+ T cells through complex processes that include inserting its genes into cellular DNA. The scientists discovered that during this integration step, a cellular enzyme called DNA-dependent protein kinase (DNA-PK) becomes activated. DNA-PK normally coordinates the repair of simultaneous breaks in both strands of molecules that comprise DNA. As HIV integrates its genes into cellular DNA, single-stranded breaks occur where viral and cellular DNA meet. Nevertheless, the scientists discovered, the DNA breaks during HIV integration surprisingly activate DNA-PK, which then performs an unusually destructive role: eliciting a signal that causes the CD4+ T cell to die. The cells that succumb to this death signal are the very ones mobilized to fight the infection.

According to the scientists, these new findings suggest that treating HIV-infected individuals with drugs that block early steps of viral replication -- up to and including activation of DNA-PK and integration -- not only can prevent viral replication, but also may improve CD4+ T cell survival and immune function. The findings also may shed light on how reservoirs of resting HIV-infected cells develop and may aid efforts to eliminate these sites of persistent infection.


Story Source:

The above story is based on materials provided by NIH/National Institute of Allergy and Infectious Diseases. Note: Materials may be edited for content and length.


Journal Reference:

  1. Arik Cooper, Mayra Garcνa, Constantinos Petrovas, Takuya Yamamoto, Richard A. Koup, Gary J. Nabel. HIV-1 causes CD4 cell death through DNA-dependent protein kinase during viral integration. Nature, 2013; DOI: 10.1038/nature12274

Cite This Page:

NIH/National Institute of Allergy and Infectious Diseases. "Scientists discover how HIV kills immune cells; Findings have implications for HIV treatment." ScienceDaily. ScienceDaily, 5 June 2013. <www.sciencedaily.com/releases/2013/06/130605144435.htm>.
NIH/National Institute of Allergy and Infectious Diseases. (2013, June 5). Scientists discover how HIV kills immune cells; Findings have implications for HIV treatment. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2013/06/130605144435.htm
NIH/National Institute of Allergy and Infectious Diseases. "Scientists discover how HIV kills immune cells; Findings have implications for HIV treatment." ScienceDaily. www.sciencedaily.com/releases/2013/06/130605144435.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) — Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) — A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) — A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins