Featured Research

from universities, journals, and other organizations

Wolbachia bacteria evolved to infect stem cell niches through successive generations of their hosts

Date:
June 6, 2013
Source:
Boston University College of Arts & Sciences
Summary:
A new study provides evidence that Wolbachia target the ovarian stem cell niches of its hosts -- a strategy previously overlooked to explain how Wolbachia thrive in nature.

Wolbachia are intracellular bacteria that infect invertebrates at pandemic levels, including insects that cause such devastating diseases as Dengue fever, West Nile virus, and malaria. While Wolbachia-based technologies are emerging as promising tools for the control of the insect vectors of these deadly diseases, the processes underlying Wolbachia’s successful propagation within and across species remain elusive.

Related Articles


A new study by Boston University researchers sheds light on some of these processes by providing evidence that A new study by Boston University researchers sheds light on some of these processes by providing evidence that Wolbachia target the ovarian stem cell niches of its hosts—a strategy previously overlooked to explain how Wolbachia thrive in nature. Wolbachia target the ovarian stem cell niches of its hosts—a strategy previously overlooked to explain how Wolbachia thrive in nature.

The study, “Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection,” has been published in the current issue of PNAS Early Edition.

Although Wolbachia are mainly vertically transmitted (from the parental generation of the species to the offspring), there is also evidence of extensive horizontal transmission (from one individual to another in the same generation). The study shows that both vertical and horizontal transmission occurs through

“Because Wolbachia are maternally transmitted, their presence in the germ line is essential for their vertical propagation to the next generation,” says Michelle Toomey, Boston University PhD student who, with Kanchana Panaram, a former postdoctoral fellow in the Frydman Lab at the Department of Biology, are the study’s co-first authors. “However, Wolbachia are often found in several somatic tissues as well, and this distribution varies among different Wolbachia–host associations.”

The study indicates it is easier for Wolbachia to reach the germ line through the stem cell niches during vertical transmission and probably during horizontal transmission as well.

Wolbachia represent the first reported case of bacteria living in a stem cell niche. The data presented in this study provide the foundation for future methodologies toward the identification of genetic pathways mediating Wolbachia’s stem-cell niche tropism in hosts,” says Horacio Frydman, assistant professor of biology. Understanding the basis of Wolbachia targeting of specific tissues in the host and its consequences toward bacterial transmission will provide further insight into their extremely successful propagation and help identify new Wolbachia-based vector control approaches.

The study was co-authored by Michelle E. Toomey, Department of Biology and National Emerging Infectious Disease Laboratory, Boston University; Kanchana Panaram, Department of Biology, Boston University; Eva M. Fast, Department of Biology, Boston University; Catherine Beatty, Department of Biology, Boston University, and Horacio M. Frydman, Department of Biology and National Emerging Infectious Disease Laboratory, Boston University.


Story Source:

The above story is based on materials provided by Boston University College of Arts & Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. E. Toomey, K. Panaram, E. M. Fast, C. Beatty, H. M. Frydman. Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1301524110

Cite This Page:

Boston University College of Arts & Sciences. "Wolbachia bacteria evolved to infect stem cell niches through successive generations of their hosts." ScienceDaily. ScienceDaily, 6 June 2013. <www.sciencedaily.com/releases/2013/06/130606110016.htm>.
Boston University College of Arts & Sciences. (2013, June 6). Wolbachia bacteria evolved to infect stem cell niches through successive generations of their hosts. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2013/06/130606110016.htm
Boston University College of Arts & Sciences. "Wolbachia bacteria evolved to infect stem cell niches through successive generations of their hosts." ScienceDaily. www.sciencedaily.com/releases/2013/06/130606110016.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins