Featured Research

from universities, journals, and other organizations

Wolbachia bacteria evolved to infect stem cell niches through successive generations of their hosts

Date:
June 6, 2013
Source:
Boston University College of Arts & Sciences
Summary:
A new study provides evidence that Wolbachia target the ovarian stem cell niches of its hosts -- a strategy previously overlooked to explain how Wolbachia thrive in nature.

Wolbachia are intracellular bacteria that infect invertebrates at pandemic levels, including insects that cause such devastating diseases as Dengue fever, West Nile virus, and malaria. While Wolbachia-based technologies are emerging as promising tools for the control of the insect vectors of these deadly diseases, the processes underlying Wolbachia’s successful propagation within and across species remain elusive.

A new study by Boston University researchers sheds light on some of these processes by providing evidence that A new study by Boston University researchers sheds light on some of these processes by providing evidence that Wolbachia target the ovarian stem cell niches of its hosts—a strategy previously overlooked to explain how Wolbachia thrive in nature. Wolbachia target the ovarian stem cell niches of its hosts—a strategy previously overlooked to explain how Wolbachia thrive in nature.

The study, “Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection,” has been published in the current issue of PNAS Early Edition.

Although Wolbachia are mainly vertically transmitted (from the parental generation of the species to the offspring), there is also evidence of extensive horizontal transmission (from one individual to another in the same generation). The study shows that both vertical and horizontal transmission occurs through

“Because Wolbachia are maternally transmitted, their presence in the germ line is essential for their vertical propagation to the next generation,” says Michelle Toomey, Boston University PhD student who, with Kanchana Panaram, a former postdoctoral fellow in the Frydman Lab at the Department of Biology, are the study’s co-first authors. “However, Wolbachia are often found in several somatic tissues as well, and this distribution varies among different Wolbachia–host associations.”

The study indicates it is easier for Wolbachia to reach the germ line through the stem cell niches during vertical transmission and probably during horizontal transmission as well.

Wolbachia represent the first reported case of bacteria living in a stem cell niche. The data presented in this study provide the foundation for future methodologies toward the identification of genetic pathways mediating Wolbachia’s stem-cell niche tropism in hosts,” says Horacio Frydman, assistant professor of biology. Understanding the basis of Wolbachia targeting of specific tissues in the host and its consequences toward bacterial transmission will provide further insight into their extremely successful propagation and help identify new Wolbachia-based vector control approaches.

The study was co-authored by Michelle E. Toomey, Department of Biology and National Emerging Infectious Disease Laboratory, Boston University; Kanchana Panaram, Department of Biology, Boston University; Eva M. Fast, Department of Biology, Boston University; Catherine Beatty, Department of Biology, Boston University, and Horacio M. Frydman, Department of Biology and National Emerging Infectious Disease Laboratory, Boston University.


Story Source:

The above story is based on materials provided by Boston University College of Arts & Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. E. Toomey, K. Panaram, E. M. Fast, C. Beatty, H. M. Frydman. Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1301524110

Cite This Page:

Boston University College of Arts & Sciences. "Wolbachia bacteria evolved to infect stem cell niches through successive generations of their hosts." ScienceDaily. ScienceDaily, 6 June 2013. <www.sciencedaily.com/releases/2013/06/130606110016.htm>.
Boston University College of Arts & Sciences. (2013, June 6). Wolbachia bacteria evolved to infect stem cell niches through successive generations of their hosts. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2013/06/130606110016.htm
Boston University College of Arts & Sciences. "Wolbachia bacteria evolved to infect stem cell niches through successive generations of their hosts." ScienceDaily. www.sciencedaily.com/releases/2013/06/130606110016.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins