Featured Research

from universities, journals, and other organizations

Wolbachia bacteria evolved to infect stem cell niches through successive generations of their hosts

Date:
June 6, 2013
Source:
Boston University College of Arts & Sciences
Summary:
A new study provides evidence that Wolbachia target the ovarian stem cell niches of its hosts -- a strategy previously overlooked to explain how Wolbachia thrive in nature.

Wolbachia are intracellular bacteria that infect invertebrates at pandemic levels, including insects that cause such devastating diseases as Dengue fever, West Nile virus, and malaria. While Wolbachia-based technologies are emerging as promising tools for the control of the insect vectors of these deadly diseases, the processes underlying Wolbachia’s successful propagation within and across species remain elusive.

Related Articles


A new study by Boston University researchers sheds light on some of these processes by providing evidence that A new study by Boston University researchers sheds light on some of these processes by providing evidence that Wolbachia target the ovarian stem cell niches of its hosts—a strategy previously overlooked to explain how Wolbachia thrive in nature. Wolbachia target the ovarian stem cell niches of its hosts—a strategy previously overlooked to explain how Wolbachia thrive in nature.

The study, “Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection,” has been published in the current issue of PNAS Early Edition.

Although Wolbachia are mainly vertically transmitted (from the parental generation of the species to the offspring), there is also evidence of extensive horizontal transmission (from one individual to another in the same generation). The study shows that both vertical and horizontal transmission occurs through

“Because Wolbachia are maternally transmitted, their presence in the germ line is essential for their vertical propagation to the next generation,” says Michelle Toomey, Boston University PhD student who, with Kanchana Panaram, a former postdoctoral fellow in the Frydman Lab at the Department of Biology, are the study’s co-first authors. “However, Wolbachia are often found in several somatic tissues as well, and this distribution varies among different Wolbachia–host associations.”

The study indicates it is easier for Wolbachia to reach the germ line through the stem cell niches during vertical transmission and probably during horizontal transmission as well.

Wolbachia represent the first reported case of bacteria living in a stem cell niche. The data presented in this study provide the foundation for future methodologies toward the identification of genetic pathways mediating Wolbachia’s stem-cell niche tropism in hosts,” says Horacio Frydman, assistant professor of biology. Understanding the basis of Wolbachia targeting of specific tissues in the host and its consequences toward bacterial transmission will provide further insight into their extremely successful propagation and help identify new Wolbachia-based vector control approaches.

The study was co-authored by Michelle E. Toomey, Department of Biology and National Emerging Infectious Disease Laboratory, Boston University; Kanchana Panaram, Department of Biology, Boston University; Eva M. Fast, Department of Biology, Boston University; Catherine Beatty, Department of Biology, Boston University, and Horacio M. Frydman, Department of Biology and National Emerging Infectious Disease Laboratory, Boston University.


Story Source:

The above story is based on materials provided by Boston University College of Arts & Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. E. Toomey, K. Panaram, E. M. Fast, C. Beatty, H. M. Frydman. Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1301524110

Cite This Page:

Boston University College of Arts & Sciences. "Wolbachia bacteria evolved to infect stem cell niches through successive generations of their hosts." ScienceDaily. ScienceDaily, 6 June 2013. <www.sciencedaily.com/releases/2013/06/130606110016.htm>.
Boston University College of Arts & Sciences. (2013, June 6). Wolbachia bacteria evolved to infect stem cell niches through successive generations of their hosts. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/06/130606110016.htm
Boston University College of Arts & Sciences. "Wolbachia bacteria evolved to infect stem cell niches through successive generations of their hosts." ScienceDaily. www.sciencedaily.com/releases/2013/06/130606110016.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins