Featured Research

from universities, journals, and other organizations

Insights into a debilitating brain disease

Date:
June 6, 2013
Source:
University of Georgia
Summary:
From the neurons that enable thought to the keratinocytes that make toenails grow -- a complex canopy of sugar molecules, commonly known as glycans, envelop every living cell in the human body. These complex carbohydrate chains perform a host of vital functions, providing the necessary machinery for cells to communicate, replicate and survive. It stands to reason, then, that when something goes wrong with a person's glycans, something goes wrong with them.

From the neurons that enable thought to the keratinocytes that make toenails grow-a complex canopy of sugar molecules, commonly known as glycans, envelop every living cell in the human body.

Related Articles


These complex carbohydrate chains perform a host of vital functions, providing the necessary machinery for cells to communicate, replicate and survive. It stands to reason, then, that when something goes wrong with a person's glycans, something goes wrong with them.

Now, researchers at the University of Georgia are learning how changes in normal glycan behavior are related to a rare but fatal lysosomal disease known as Niemann-Pick type C (NPC), a genetic disorder that prevents the body from metabolizing cholesterol properly. The findings were published recently in the PNAS Early Edition.

"We are learning that the problems associated with cholesterol trafficking in the cell lead to problems with glycans on the cell's surface, and that causes a multitude of negative effects," said Geert-Jan Boons, professor of chemistry in the Franklin College of Arts and Sciences and researcher at UGA's Complex Carbohydrate Research Center. "Now, for the first time, we can see what these problems are, which we hope will lead to a new understanding of diseases like NPC."

Because NPC patients are unable to metabolize cholesterol, the waxy substance begins to accumulate in the brain. This can lead to a host of serious problems, including neurodegeneration, which the researchers hypothesize may be caused by improper recycling of glycans on the surface of an NPC patient's cells.

Glycans normally undergo a kind of recycling process when they enter the cell only to be returned to the surface recharged and ready to work. The researchers discovered that glycans in NPC cells do not do this.

"One of the secondary effects of NPC is the disruption of traffic pathways within the cell, and this can lead to altered recycling of glycans," said Richard Steet, associate professor of biochemistry and molecular biology and CCRC researcher. "The glycans come into the cell, but they won't recycle back up to the cell's surface where they must exist to function as receptors or ion channels."

"Basically, the machinery gets clogged up," Boons said.

Like downed phone lines and flooded roads in a thunderstorm, glycans get stuck inside the cell making communication and travel for these cells difficult or impossible. Without these basic abilities, the body's motor, sensory and cognitive functions begin to suffer. This might explain why NPC patients suffer from such a wide variety of neurological and psychiatric disorders, such as uncoordinated limb movements, slurred speech, epilepsy, paralysis, psychosis, dementia and hallucinations.

The researchers made these observations in fibroblasts taken from diseased patients. These cells are most commonly found in connective tissues, and they play a vital role in wound healing. However, they hope to continue their investigation into the effects of NPC by studying glycan behavior in neural cells, which make up the human brain.

While they caution that much more work must be done, they hope that an improved understanding of the roles that glycans play in neural cells will lead to new therapeutics for NPC and other diseases like it.

"It is exciting to work on projects like these, because we believe glycobiology is the next frontier, the next level of complexity," Boons said. "The time is right for new discovery."


Story Source:

The above story is based on materials provided by University of Georgia. The original article was written by James Hataway. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. E. Mbua, H. Flanagan-Steet, S. Johnson, M. A. Wolfert, G.-J. Boons, R. Steet. Abnormal accumulation and recycling of glycoproteins visualized in Niemann-Pick type C cells using the chemical reporter strategy. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1221105110

Cite This Page:

University of Georgia. "Insights into a debilitating brain disease." ScienceDaily. ScienceDaily, 6 June 2013. <www.sciencedaily.com/releases/2013/06/130606140848.htm>.
University of Georgia. (2013, June 6). Insights into a debilitating brain disease. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2013/06/130606140848.htm
University of Georgia. "Insights into a debilitating brain disease." ScienceDaily. www.sciencedaily.com/releases/2013/06/130606140848.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins