Featured Research

from universities, journals, and other organizations

Insights into a debilitating brain disease

Date:
June 6, 2013
Source:
University of Georgia
Summary:
From the neurons that enable thought to the keratinocytes that make toenails grow -- a complex canopy of sugar molecules, commonly known as glycans, envelop every living cell in the human body. These complex carbohydrate chains perform a host of vital functions, providing the necessary machinery for cells to communicate, replicate and survive. It stands to reason, then, that when something goes wrong with a person's glycans, something goes wrong with them.

From the neurons that enable thought to the keratinocytes that make toenails grow-a complex canopy of sugar molecules, commonly known as glycans, envelop every living cell in the human body.

Related Articles


These complex carbohydrate chains perform a host of vital functions, providing the necessary machinery for cells to communicate, replicate and survive. It stands to reason, then, that when something goes wrong with a person's glycans, something goes wrong with them.

Now, researchers at the University of Georgia are learning how changes in normal glycan behavior are related to a rare but fatal lysosomal disease known as Niemann-Pick type C (NPC), a genetic disorder that prevents the body from metabolizing cholesterol properly. The findings were published recently in the PNAS Early Edition.

"We are learning that the problems associated with cholesterol trafficking in the cell lead to problems with glycans on the cell's surface, and that causes a multitude of negative effects," said Geert-Jan Boons, professor of chemistry in the Franklin College of Arts and Sciences and researcher at UGA's Complex Carbohydrate Research Center. "Now, for the first time, we can see what these problems are, which we hope will lead to a new understanding of diseases like NPC."

Because NPC patients are unable to metabolize cholesterol, the waxy substance begins to accumulate in the brain. This can lead to a host of serious problems, including neurodegeneration, which the researchers hypothesize may be caused by improper recycling of glycans on the surface of an NPC patient's cells.

Glycans normally undergo a kind of recycling process when they enter the cell only to be returned to the surface recharged and ready to work. The researchers discovered that glycans in NPC cells do not do this.

"One of the secondary effects of NPC is the disruption of traffic pathways within the cell, and this can lead to altered recycling of glycans," said Richard Steet, associate professor of biochemistry and molecular biology and CCRC researcher. "The glycans come into the cell, but they won't recycle back up to the cell's surface where they must exist to function as receptors or ion channels."

"Basically, the machinery gets clogged up," Boons said.

Like downed phone lines and flooded roads in a thunderstorm, glycans get stuck inside the cell making communication and travel for these cells difficult or impossible. Without these basic abilities, the body's motor, sensory and cognitive functions begin to suffer. This might explain why NPC patients suffer from such a wide variety of neurological and psychiatric disorders, such as uncoordinated limb movements, slurred speech, epilepsy, paralysis, psychosis, dementia and hallucinations.

The researchers made these observations in fibroblasts taken from diseased patients. These cells are most commonly found in connective tissues, and they play a vital role in wound healing. However, they hope to continue their investigation into the effects of NPC by studying glycan behavior in neural cells, which make up the human brain.

While they caution that much more work must be done, they hope that an improved understanding of the roles that glycans play in neural cells will lead to new therapeutics for NPC and other diseases like it.

"It is exciting to work on projects like these, because we believe glycobiology is the next frontier, the next level of complexity," Boons said. "The time is right for new discovery."


Story Source:

The above story is based on materials provided by University of Georgia. The original article was written by James Hataway. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. E. Mbua, H. Flanagan-Steet, S. Johnson, M. A. Wolfert, G.-J. Boons, R. Steet. Abnormal accumulation and recycling of glycoproteins visualized in Niemann-Pick type C cells using the chemical reporter strategy. Proceedings of the National Academy of Sciences, 2013; DOI: 10.1073/pnas.1221105110

Cite This Page:

University of Georgia. "Insights into a debilitating brain disease." ScienceDaily. ScienceDaily, 6 June 2013. <www.sciencedaily.com/releases/2013/06/130606140848.htm>.
University of Georgia. (2013, June 6). Insights into a debilitating brain disease. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2013/06/130606140848.htm
University of Georgia. "Insights into a debilitating brain disease." ScienceDaily. www.sciencedaily.com/releases/2013/06/130606140848.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Bupa Eyes India Healthcare Opportunities

Bupa Eyes India Healthcare Opportunities

Reuters - Business Video Online (Mar. 5, 2015) Bupa is hoping to expand in India&apos;s fast-growing health insurance market, once a rule change on foreign investment is implemented. The British private healthcare group&apos;s CEO tells Grace Pascoe why it&apos;s so keen on the new opportunity. Video provided by Reuters
Powered by NewsLook.com
Doctor in Your Pocket Is Getting Smarter

Doctor in Your Pocket Is Getting Smarter

Reuters - Business Video Online (Mar. 5, 2015) Mobile apps are turning smartphones into a personal doctors, with users able to measure heart rate, blood pressure and even blood sugar. But will it change our behaviour? Ivor Bennett reports from the Mobile World Congress in Barcelona. Video provided by Reuters
Powered by NewsLook.com
AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

AbbVie Inks $21B Deal To Buy Cancer Drugmaker Pharmacyclics

Newsy (Mar. 5, 2015) AbbVie announced Wednesday it will buy cancer drugmaker Pharmacyclics in a $21 billion deal. Video provided by Newsy
Powered by NewsLook.com
Toddlers Drinking Coffee? Why You Shouldn't Share Your Joe

Toddlers Drinking Coffee? Why You Shouldn't Share Your Joe

Newsy (Mar. 5, 2015) A survey of Boston mothers and toddlers found that 15 percent of two-year-olds drink coffee and 2.5 percent of 1-year-olds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins