Featured Research

from universities, journals, and other organizations

Nanotechnology and the secret life of knots

Date:
June 10, 2013
Source:
Sissa Medialab
Summary:
Nanotechnologies require a  detailed knowledge of the molecular state. For instance, it is useful to know when and how a generic polymer, a long chain of polymers (chain of beads), knots. The study of molecular entanglement  is an important field of study as the presence of knots affects its physical properties, for instance the resistence to traction. Previous studies had mainly obtained “static” data on the knotting probability of such molecules. In other words, they focused on the likelihood that a polymer may knot. The novelty of the new study lies in the fact that this time the dynamic aspect of the phenomenon has been simulated.

Polymer entanglement.
Credit: SISSA

Nanotechnologies require a detailed knowledge of the molecular state. For instance, it is useful to know when and how a generic polymer, a long chain of polymers (chain of beads), knots. The study of molecular entanglement is an important field of study as the presence of knots affects its physical properties, for instance the resistence to traction. Previous studies had mainly obtained "static" data on the knotting probability of such molecules. In other words, they focused on the likelihood that a polymer may knot. The novelty of the study carried out by Micheletti and colleagues lies in the fact that this time the dynamic aspect of the phenomenon has been simulated.

Related Articles


"It's a little like the difference that lies between a disorganized collection of photographs and a video. With the former we obtain statistical information (for instance, how many times a knot will appear), but we don't know how that situation occurred and how it will evolve," explained Micheletti. "Thanks to dynamic simulation we have found, for instance, that knots tend to form at the ends, where they are very frequent yet ephemeral, that is, they are short-lived."

According to the team's observations, in fact, once formed the knot moves along the chain in an apparently casual manner, it may take a step to the left, then two to the right and so on, so that at the end of the chain it generally tends to disappear, "falling" outside the filament. Micheletti also explains that, although more infrequently, it has been observed that the knot moves towards the centre of the polymer: "When this occurs, the knots average lifetime is higher than when they remain trapped at the ends."

At the center of the polymer also slip-knots or pseudo-knots, may form. "At first a loop is formed and this blocks another part of the filament. If thermal fluctuations pull to the correct side the knot disappears, while if they pull to the loop side, a proper knot may be created. These knots are very long-lived," explains Rosa.

"This research is useful since the data on simple knotting probability reveal nothing about knotting timing," underlines Tubiana. "If knots form and disappear very quickly, after a certain amount of time we may observe a given percentage of average knotting, yet we do not know whether the knots have remained the same or if they have changed through time. Researchers who carry out experiments of this kind need, instead, more detailed information."


Story Source:

The above story is based on materials provided by Sissa Medialab. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Tubiana, A. Rosa, F. Fragiacomo, C. Micheletti. Spontaneous Knotting and Unknotting of Flexible Linear Polymers: Equilibrium and Kinetic Aspects. Macromolecules, 2013; 46 (9): 3669 DOI: 10.1021/ma4002963

Cite This Page:

Sissa Medialab. "Nanotechnology and the secret life of knots." ScienceDaily. ScienceDaily, 10 June 2013. <www.sciencedaily.com/releases/2013/06/130610084135.htm>.
Sissa Medialab. (2013, June 10). Nanotechnology and the secret life of knots. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2013/06/130610084135.htm
Sissa Medialab. "Nanotechnology and the secret life of knots." ScienceDaily. www.sciencedaily.com/releases/2013/06/130610084135.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) — Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) — A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins