Featured Research

from universities, journals, and other organizations

Do parasites upset food web theory?

Date:
June 11, 2013
Source:
Public Library of Science
Summary:
Parasites comprise a large proportion of the diversity of species in every ecosystem, but are rarely included in analyses or models of food webs. If parasites play different roles from other predators and prey, however, their inclusion could fundamentally alter our understanding of how food webs are organized. A new article has shown that including parasites does alter the structure of food webs, but most changes occur because of an increase in diversity and complexity.

From: Figure 1. Images of three trophic species versions of the food web of Estero de Punta Banda. (A) Web with free-living species only. (B) Web with parasite species but not concomitant predation links. (C) Web with parasite species and concomitant links. Green indicates basal taxa, red indicates free-living taxa, and blue indicates parasites. The vertical axis corresponds to short-weighted trophic level [94]. The maximum trophic levels for a taxon in each web are 3.77 (A), 5.68 (B), and 7.16 (C).
Credit: Dunne JA, Lafferty KD, Dobson AP, Hechinger RF, Kuris AM, et al. (2013) Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity. PLoS Biol 11(6): e1001579. doi:10.1371/journal.pbio.1001579

Parasites comprise a large proportion of the diversity of species in every ecosystem. Despite this, they are rarely included in analyses or models of food webs. If parasites play different roles from other predators and prey, however, their inclusion could fundamentally alter our understanding of how food webs are organized. In a paper published 11 June in the open access journal PLOS Biology, Santa Fe Institute Professor Jennifer Dunne and her team test this assertion and show that including parasites does alter the structure of food webs, but that most changes occur because of an increase in diversity and complexity, rather than from unique characteristics of parasites.

"Current food web models and theory were developed with data for free-living species," said Dunne. "We wanted to understand whether including parasites alters network structure in unique ways, or if observed changes are consistent with the addition of any types of species and links to a food web."

The group of researchers, which included parasitologists and food web ecologists, analyzed highly resolved datasets for seven coastal estuary and marine food webs. They compared three versions of each food web dataset: webs without parasites; webs that included parasites and all of their links to other species; and an intermediate case that included parasites but excluded the "concomitant" links between a predator and the parasites of its prey.

The team found that including parasites altered many aspects of network structure, such as the distribution of feeding links per species, the average shortest feeding chain between pairs of species, and the proportion of species that are omnivores or cannibals. But a closer look suggested that most of these changes were generic effects of increasing the overall diversity and complexity of the network, rather than unique effects attributable to the parasites' roles in food webs.

"Our analyses show that in many ways parasites are similar to other species in terms of their effects on food web organization," said Dunne. However, the team did find two cases where parasites seem to play special roles that alter aspects of food web structure. One case is when a parasite is eaten along with its host. "The physical intimacy between a parasite and its host is not found as frequently between free-living predators and prey," Dunne said. "The fact that predators incidentally feed on the parasites of their prey can alter certain patterns of interactions among species."

The other case appears to result from the complex life cycles of many of the parasites in these food webs. Parasites can shift hosts in a dramatic fashion, for example by starting out with a cricket as a host, but later requiring a fish host. This results in a more structurally complex feeding niche than is seen for most free-living predators.

"Our research extends the generality of food web theory and provides a more rigorous framework for assessing the impact of any species on trophic organization," said Dunne. "However, it also reveals limitations of current food web models when they are applied to the more diverse and highly resolved data that researchers are increasingly compiling."


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jennifer A. Dunne, Kevin D. Lafferty, Andrew P. Dobson, Ryan F. Hechinger, Armand M. Kuris, Neo D. Martinez, John P. McLaughlin, Kim N. Mouritsen, Robert Poulin, Karsten Reise, Daniel B. Stouffer, David W. Thieltges, Richard J. Williams, Claus Dieter Zander. Parasites Affect Food Web Structure Primarily through Increased Diversity and Complexity. PLoS Biology, 2013; 11 (6): e1001579 DOI: 10.1371/journal.pbio.1001579

Cite This Page:

Public Library of Science. "Do parasites upset food web theory?." ScienceDaily. ScienceDaily, 11 June 2013. <www.sciencedaily.com/releases/2013/06/130611204639.htm>.
Public Library of Science. (2013, June 11). Do parasites upset food web theory?. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2013/06/130611204639.htm
Public Library of Science. "Do parasites upset food web theory?." ScienceDaily. www.sciencedaily.com/releases/2013/06/130611204639.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins