Featured Research

from universities, journals, and other organizations

Breakthrough allows fast, reliable pathogen identification

Date:
June 12, 2013
Source:
University of Toronto Faculty of Applied Science & Engineering
Summary:
Researchers may have developed a way to quickly and reliably diagnose life-threatening bacterial infections and pinpoint the right antibiotics to clear the infections.

A University of Toronto team -- including researchers from Electrical and Computer Engineering and the Institute of Biomaterials & Biomedical Engineering -- has created an electronic chip that can analyze blood and other clinical samples for infectious bacteria with record-breaking speed.

Life-threatening bacterial infections cause tens of thousands of deaths every year in North America but current methods of culturing bacteria in the lab can take days to report the specific source of the infection, and even longer to pinpoint the right antibiotic that will clear the infection.

The new technology, reported in the journal Nature Communications, can identify the pathogen in a matter of minutes, and looks for many different bacteria and drug resistance markers in parallel, allowing rapid and specific identification of infectious agents.

"Overuse of antibiotics is driving the continued emergence of drug-resistant bacteria," said Shana Kelley (Pharmacy and Biochemistry), a senior author of the study. "A chief reason for use of ineffective or inappropriate antibiotics is the lack of a technology that rapidly offers physicians detailed information about the specific cause of the infection."

The researchers developed an integrated circuit that could detect bacteria at concentrations found in patients presenting with a urinary tract infection. "The chip reported accurately on the type of bacteria in a sample, along with whether the pathogen possessed drug resistance," explained Chemistry PhD student Brian Lam, the first author of the study.

One key to the advance was the design of an integrated circuit that could accommodate a panel of many biomarkers. "The team discovered how to use the liquids in which biological samples are immersed as a 'switch' -- allowing us to look separately for each biomarker in the sample in turn," said Ted Sargent (Electrical and Computer Engineering), the other senior author of the report.

"The solution-based circuit chip rapidly and identifies and determines the antibiotic resistance of multiple pathogens -- this represents a significant advance in biomolecular sensing," said Paul S. Weiss, Kavli Chair in NanoSystems Science and Director of the California NanoSystems Institute at UCLA.

Ihor Boszko, Director of Business Development at Xagenic, a Toronto-based in vitro diagnostics company said the breakthrough could have significant practical implications. "This kind of highly sensitive, enzyme-free electrochemical detection technology will have tremendous utility for near patient clinical diagnostics. Multiplexing of in vitro diagnostic approach adds the capability of simultaneously testing for multiple viruses or bacteria that produce similar clinical symptoms. It also allows for simple and cost effective manufacturing of highly multiplexed electrochemical detectors, which will certainly have a significant impact on the availability of effective diagnostic tools."


Story Source:

The above story is based on materials provided by University of Toronto Faculty of Applied Science & Engineering. Note: Materials may be edited for content and length.


Journal Reference:

  1. Brian Lam, Jagotamoy Das, Richard D. Holmes, Ludovic Live, Andrew Sage, Edward H. Sargent, Shana O. Kelley. Solution-based circuits enable rapid and multiplexed pathogen detection. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3001

Cite This Page:

University of Toronto Faculty of Applied Science & Engineering. "Breakthrough allows fast, reliable pathogen identification." ScienceDaily. ScienceDaily, 12 June 2013. <www.sciencedaily.com/releases/2013/06/130612133359.htm>.
University of Toronto Faculty of Applied Science & Engineering. (2013, June 12). Breakthrough allows fast, reliable pathogen identification. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2013/06/130612133359.htm
University of Toronto Faculty of Applied Science & Engineering. "Breakthrough allows fast, reliable pathogen identification." ScienceDaily. www.sciencedaily.com/releases/2013/06/130612133359.htm (accessed July 26, 2014).

Share This




More Plants & Animals News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins