Featured Research

from universities, journals, and other organizations

Contribution of particulate matter from air pollution to forest decline

Date:
June 19, 2013
Source:
Universität Bonn
Summary:
Air pollution is related to forest decline and also appears to attack the protecting wax on tree leaves and needles. Scientists have now discovered a responsible mechanism: particulate matter salt compounds that become deliquescent because of humidity and form a wick-like structure that removes water from leaves and promotes dehydration.

With a forest pine: Dr. Jürgen Burkhardt and Shyam Pariyar (from right) from the Institute of Crop Science and Resource of the University Bonn.
Credit: Copyright Volker Lannert/Uni Bonn

Air pollution is related to forest decline and also appears to attack the protecting wax on tree leaves and needles. Bonn University scientists have now discovered a responsible mechanism: particulate matter salt compounds that become deliquescent because of humidity and form a wick-like structure that removes water from leaves and promotes dehydration. These results are published in "Environmental Pollution."

Nature conservationists call it "lingering illness," and the latest report on the North-Rhine Westphalian forest conditions confirms ongoing damage. Bonn University scientists have now shown that salt deposits on leaves may decrease the drought tolerance of trees, thereby contributing to forest decline. "Our study reveals that so-called wax degradation on pine needles may develop from deposited particulate matter," says Dr. Jürgen Burkhardt from the Institute of Crop Science and Resource Conservation. Wax helps to protect leaves and needles from water loss.

It has long been known that air pollutants accelerate wax ageing and that "wax degradation" is closely related to forest damage. "Wax degradation was addressed by many studies in the 1980s and 90s, but sound explanations for both the degradation mechanism and the high correlation with forest damage have yet been missing," Dr. Burkhardt reports. Previous approaches assumed chemical reactions for wax degradation, whereas the present study reveals physical reasons. "The deposition of hygroscopic salts is capable of decreasing the drought tolerance of trees," co-author Shyam Pariyar says.

Accelerated dehydration of needles treated with salt solutions

The scientists sprayed salt solutions on Scots pine needles and recorded their weight loss after abscission. The needles treated with salt solutions dried out significantly faster than the untreated control needles. Using an electron microscope, the scientists observed the salts becoming deliquescent and moving into the stomata of the needles. Stomata are tiny pores used by plants to take up carbon dioxide for photosynthesis and release water vapor and oxygen. The deliquescent salts form very thin liquid connections between the surface and interior of the needle, and water is removed from the needles by these wick-like structures. Because the plants are unable to counteract this removal of water, the plants dehydrate more rapidly. Therefore, polluted air containing large amounts of particulate matter may directly reduce the drought tolerance of trees. Simultaneously, the deliquescent salts make wax appear "degraded." "This newly described mechanism was not considered in earlier explanations of Central European forest decline," states Dr. Burkhardt.

Conceivable aggravation of forest decline by climate change

A new type of electron microscope enabled the observation of particle deliquescence and dynamics under changing air humidity. In addition, a long-lasting scientific paradigm had excluded any aqueous movement into the stomata, and only recently had Bonn University scientists confirmed its existence.

Recently, regional forest damage has been reported in the western USA and other parts of the world. A relationship with increasing climate change-type drought has been proposed, but the newly discovered mechanism involving particulate matter might contribute to the regional forest damage. "Particularly because air concentrations of hygroscopic particles have largely increased within the last decades," says Dr. Burkhardt.

The study was funded by the Deutsche Forschungsgemeinschaft and the European Union (project ÉCLAIRE).


Story Source:

The above story is based on materials provided by Universität Bonn. Note: Materials may be edited for content and length.


Journal Reference:

  1. Juergen Burkhardt, Shyam Pariyar. Particulate pollutants are capable to ‘degrade’ epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.). Environmental Pollution, 2013; DOI: 10.1016/j.envpol.2013.04.041

Cite This Page:

Universität Bonn. "Contribution of particulate matter from air pollution to forest decline." ScienceDaily. ScienceDaily, 19 June 2013. <www.sciencedaily.com/releases/2013/06/130619101438.htm>.
Universität Bonn. (2013, June 19). Contribution of particulate matter from air pollution to forest decline. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2013/06/130619101438.htm
Universität Bonn. "Contribution of particulate matter from air pollution to forest decline." ScienceDaily. www.sciencedaily.com/releases/2013/06/130619101438.htm (accessed August 21, 2014).

Share This




More Plants & Animals News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) — According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com
Ramen Health Risks: The Dark Side of the Noodle

Ramen Health Risks: The Dark Side of the Noodle

AP (Aug. 21, 2014) — South Koreans eat more instant ramen noodles per capita than anywhere else in the world. But American researchers say eating too much may increase the risk of diabetes, heart disease and stroke. (Aug. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins