Featured Research

from universities, journals, and other organizations

Molecule that reduces fats in blood identified

Date:
June 24, 2013
Source:
SUNY Downstate Medical Center
Summary:
Researchers have found that a regulatory RNA molecule interferes with the production of lipoproteins and, in a mouse model, reduces hyperlipidemia and atherosclerosis.

Hyperlipidemia, a condition with high levels of fats circulating in the bloodstream, is a known risk factor for various cardiovascular and metabolic disorders. While the Western diet often contributes to high levels of lipids such as cholesterol and triglycerides, over-production of the body's own lipoproteins can lead to hyperlipidemia, independent of food intake.

Related Articles


In a discovery that may pave the way towards new treatments for high cholesterol, researchers led by M. Mahmood Hussain, PhD, Professor of Cell Biology at SUNY Downstate Medical Center, found that a regulatory RNA molecule interferes with the production of lipoproteins and, in a mouse model, reduces hyperlipidemia and atherosclerosis. Their study was published recently in the online edition of Nature Medicine.

Dr. Hussain, whose laboratory focuses on molecular mechanisms of intestinal lipoprotein assembly, says, "High plasma lipid and lipoprotein levels are a risk factor for atherosclerosis, and lowering plasma lipid levels is a national goal. While current medications and changes in diet can be effective, cardiovascular disease remains the number one cause of death in the United States, and additional approaches to decrease lipid levels are needed."

In their Nature Medicine article, Dr. Hussain and colleagues note that "overproduction of lipoproteins, a process that is dependent on microsomal triglyceride transfer protein (MTP), can contribute to hyperlipidemia." They demonstrate that microRNA-30c (miR-30c), a genetic regulator, interacts with MTP and induces its degradation, leading to reductions in MTP activity, the production of lipoproteins, plasma lipids, and atherosclerosis. This molecule also reduces lipid synthesis independently of MTP thereby avoiding complications associated with drug therapies aimed at lowering lipoprotein production.

The authors conclude that a medication mimicking miR-30c could potentially be effective in reducing hyperlipidemia in humans.

This work was supported in part by U.S. National Institutes of Health grants R01DK046900, from the National Institute of Diabetes and Digestive and Kidney Diseases, and R01HL095924, from the National Heart, Lung and Blood Institute.


Story Source:

The above story is based on materials provided by SUNY Downstate Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. James Soh, Jahangir Iqbal, Joyce Queiroz, Carlos Fernandez-Hernando, M Mahmood Hussain. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nature Medicine, 2013; DOI: 10.1038/nm.3200

Cite This Page:

SUNY Downstate Medical Center. "Molecule that reduces fats in blood identified." ScienceDaily. ScienceDaily, 24 June 2013. <www.sciencedaily.com/releases/2013/06/130624141342.htm>.
SUNY Downstate Medical Center. (2013, June 24). Molecule that reduces fats in blood identified. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2013/06/130624141342.htm
SUNY Downstate Medical Center. "Molecule that reduces fats in blood identified." ScienceDaily. www.sciencedaily.com/releases/2013/06/130624141342.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins