Featured Research

from universities, journals, and other organizations

Researchers strike gold with nanotech vaccine

Date:
June 25, 2013
Source:
Institute of Physics (IOP)
Summary:
Scientists have developed a novel vaccination method that uses tiny gold particles to mimic a virus and carry specific proteins to the body’s specialist immune cells. The technique differs from the traditional approach of using dead or inactive viruses as a vaccine and was demonstrated in the lab using a specific protein that sits on the surface of the respiratory syncytial virus (RSV).

Scientists in the US have developed a novel vaccination method that uses tiny gold particles to mimic a virus and carry specific proteins to the body's specialist immune cells.

The technique differs from the traditional approach of using dead or inactive viruses as a vaccine and was demonstrated in the lab using a specific protein that sits on the surface of the respiratory syncytial virus (RSV).

The results have been published today, 26 June, in IOP Publishing's journal Nanotechnology by a team of researchers from Vanderbilt University.

RSV is the leading viral cause of lower respiration tract infections, causing several hundred thousand deaths and an estimated 65 million infections a year, mainly in children and the elderly.

The detrimental effects of RSV come, in part, from a specific protein, called the F protein, which coats the surface of the virus. The protein enables the virus to enter into the cytoplasm of cells and also causes cells to stick together, making the virus harder to eliminate.

The body's natural defence to RSV is therefore directed at the F protein; however, up until now, researchers have had difficulty creating a vaccine that delivers the F protein to the specialised immune cells in the body. If successful, the F protein could trigger an immune response which the body could 'remember' if a subject became infected with the real virus.

In this study the researchers created exceptionally small gold nanorods, just 21 nanometres wide and 57 nanometres long, which were almost exactly the same shape and size as the virus itself. The gold nanorods were successfully coated with the RSV F proteins and were bonded strongly thanks to the unique physical and chemical properties of the nanorods themselves.

The researchers then tested the ability of the gold nanorods to deliver the F protein to specific immune cells, known as dendritic cells, which were taken from adult blood samples.

Dendritic cells function as processing cells in the immune system, taking the important information from a virus, such as the F protein, and presenting it to cells that can perform an action against them―the T cells are just one example of a cell that can take action.

Once the F protein-coated nanorods were added to a sample of dendritic cells, the researchers analysed the proliferation of T cells as a proxy for an immune response. They found that the protein-coated nanorods caused the T cells to proliferate significantly more compared to non-coated nanorods and just the F protein alone.

Not only did this prove that the coated-nanorods were capable of mimicking the virus and stimulating an immune response, it also showed that they were not toxic to human cells, offering significant safety advantages and increasing their potential as a real-life human vaccine.

Lead author of the study, Professor James Crowe, said: "A vaccine for RSV, which is the major cause of viral pneumonia in children, is sorely needed. This study shows that we have developed methods for putting RSV F protein into exceptionally small particles and presenting it to immune cells in a format that physically mimics the virus. Furthermore, the particles themselves are not infectious."

Due to the versatility of the gold nanorods, Professor Crowe believes that their potential use is not limited to RSV.

"This platform could be used to develop experimental vaccines for virtually any virus, and in fact other larger microbes such as bacteria and fungi.

"The studies we performed showed that the candidate vaccines stimulated human immune cells when they were interacted in the lab. The next steps to testing would be to test whether or not the vaccines work in vivo" Professor Crowe continued.


Story Source:

The above story is based on materials provided by Institute of Physics (IOP). Note: Materials may be edited for content and length.


Journal Reference:

  1. John W Stone, Natalie J Thornburg, David L Blum, Sam J Kuhn, David W Wright, James E Crowe Jr. Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology, 2013; 24 (29): 295102 DOI: 10.1088/0957-4484/24/29/295102

Cite This Page:

Institute of Physics (IOP). "Researchers strike gold with nanotech vaccine." ScienceDaily. ScienceDaily, 25 June 2013. <www.sciencedaily.com/releases/2013/06/130625192547.htm>.
Institute of Physics (IOP). (2013, June 25). Researchers strike gold with nanotech vaccine. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2013/06/130625192547.htm
Institute of Physics (IOP). "Researchers strike gold with nanotech vaccine." ScienceDaily. www.sciencedaily.com/releases/2013/06/130625192547.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins