Featured Research

from universities, journals, and other organizations

Cancer-linked FAM190A gene found to regulate cell division

Date:
July 3, 2013
Source:
Johns Hopkins Medicine
Summary:
Cancer scientists have discovered that a little-described gene known as FAM190A plays a subtle but critical role in regulating the normal cell division process known as mitosis, and the scientists’ research suggests that mutations in the gene may contribute to commonly found chromosomal instability in cancer.

Johns Hopkins cancer scientists have discovered that a little-described gene known as FAM190A plays a subtle but critical role in regulating the normal cell division process known as mitosis, and the scientists' research suggests that mutations in the gene may contribute to commonly found chromosomal instability in cancer.

In laboratory studies of cells, investigators found that knocking down expression of FAM190A disrupts mitosis. In three pancreatic cancer-cell lines and a standard human-cell line engineered to be deficient in FAM190A, researchers observed that cells often had difficulty separating at the end of mitosis, creating cells with two or more nuclei. The American Journal of Pathology published a description of the work online May 17, which comes nearly a century after German scientist Theodor Boveri linked abnormal mitosis to cancer. Until now, there had been no common gene alteration identified as the culprit for cancer-linked mitosis.

"These cells try to divide, and it looks like they succeed, except they wind up with a strand that connects them," explains Scott Kern, M.D., professor of oncology and pathology at Johns Hopkins University School of Medicine and its Kimmel Cancer Center. "The next time they try to divide, all the nuclei come together, and they try to make four cells instead of two. Subsequently, they try to make eight cells, and so on." Movies of the process taken by Kern's laboratory are available on the journal Web site.

Kern's group previously reported that deletions in the FAM190A gene could be found in nearly 40 percent of human cancers. That report, published in 2011 in the journal Oncotarget, and the current one are believed to be the only published papers focused solely on FAM190A, which is frequently altered in human cancers but whose function has been unknown. Alterations in FAM190A messages may be the third most common in human cancers after those for the more well-known genes p53 and p16, Kern says.

"We don't think that a species can exist without FAM190, but we don't think severe defects in FAM190A readily survive among cancers," Kern says. "The mutations seen here are very special -- they don't take out the whole gene but instead remove an internal portion and leave what we call the reading frame. We think we're finding a more subtle defect in human cancers, in which mitosis defects can occur episodically, and we propose it may happen in about 40 percent of human cancers."

Abnormalities in FAM190A may cause chromosomal imbalances seen so commonly in cancers, Kern says. Multipolar mitosis is one of the most common functional defects reported in human cancers, and more than 90 percent of human cancers have abnormal numbers of chromosomes.

Kern says he plans to study FAM190A further by creating lab models of the subtle defects akin to what actually is tolerated by human cancer cells.

The work was supported by the National Institutes of Health (National Cancer Institute, CA134292, CA62924, CA128920) and by the Everett and Marjorie Kovler Professorship in Pancreas Cancer Research. Co-authors were Kalpesh Patel, Francesca Scrimieri, Soma Ghosh, Jun Zhong, Min-Sik Kim, Yunzhao R. Ren, Richard A. Morgan, Christine A. Iacobuzio-Donahue, and Akhilesh Pandey of Johns Hopkins.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kalpesh Patel, Francesca Scrimieri, Soma Ghosh, Jun Zhong, Min-Sik Kim, Yunzhao R. Ren, Richard A. Morgan, Christine A. Iacobuzio-Donahue, Akhilesh Pandey, Scott E. Kern. FAM190A Deficiency Creates a Cell Division Defect. The American Journal of Pathology, 2013; 183 (1): 296 DOI: 10.1016/j.ajpath.2013.03.020

Cite This Page:

Johns Hopkins Medicine. "Cancer-linked FAM190A gene found to regulate cell division." ScienceDaily. ScienceDaily, 3 July 2013. <www.sciencedaily.com/releases/2013/07/130703160357.htm>.
Johns Hopkins Medicine. (2013, July 3). Cancer-linked FAM190A gene found to regulate cell division. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2013/07/130703160357.htm
Johns Hopkins Medicine. "Cancer-linked FAM190A gene found to regulate cell division." ScienceDaily. www.sciencedaily.com/releases/2013/07/130703160357.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins