Featured Research

from universities, journals, and other organizations

Kill-switch controls immune-suppressing cells, scientists discover

Date:
July 14, 2013
Source:
Walter and Eliza Hall Institute of Medical Research
Summary:
Scientists have uncovered the mechanism that controls whether cells that are able to suppress immune responses live or die.

Scientists have uncovered the mechanism that controls whether cells that are able to suppress immune responses live or die.

The discovery of the cell death processes that determine the number of 'regulatory T cells' an individual has could one day lead to better treatments for immune disorders.

Regulatory T cells are members of a group of immune cells called T cells. Most T cells actively respond to clear the body of infections. By contrast, regulatory T cells are considered to be immune suppressing cells because they can 'switch off' an immune response to a particular molecule. This immune suppression is important for preventing inappropriate immune attack of the body's own tissues, which is the underlying cause of autoimmune diseases such as lupus and type 1 diabetes.

A shortage of regulatory T cells is linked with the development of autoimmune and inflammatory conditions, while some people with higher than normal numbers of regulatory T cells cannot fight infections properly.

Dr Daniel Gray and Ms Antonia Policheni from the Walter and Eliza Hall Institute's Molecular Genetics of Cancer and Immunology divisions made the discovery about how regulatory T cell numbers are controlled as part of an international team of researchers jointly led by Dr Gray and Dr Adrian Liston who is head of the Flanders Institute for Biotechnology (VIB) Laboratory for Autoimmune Genetics at the University of Leuven, Belgium. They found that regulatory T cells are constantly being produced in the body, but their numbers are held steady by a process of cell death. The findings are published today in the journal Nature Immunology.

Cell death, or apoptosis, is important in many immune cell types for the removal of excess, defective or damaged cells. The decision of these cells on whether to live or die is controlled by a family of proteins called the 'Bcl-2 protein family'. This includes proteins that can either promote cell survival or trigger cell death, in response to many different stimuli.

Dr Gray said the team had discovered that Bcl-2 family proteins were important determinants of regulatory T cell numbers. "Regulatory T cell death is highly dependent on the activity of two opposing Bcl-2 family proteins, called Mcl-1 and Bim," he said. "Mcl-1 is required for regulatory T cell survival, allowing them to suppress unhealthy immune responses, while Bim triggers the death of regulatory T cells. Without Mcl-1 activity, regulatory T cell numbers fall, provoking lethal autoimmune disease. Conversely, if Bim activity is lost, regulatory T cells accumulate in abnormally high numbers."

Dr Liston said the finding was exciting, because it opened up new ways to control regulatory T cell numbers in disease. "Already, there is considerable interest in a new class of agents, called 'BH-3 mimetics' that target Bcl-2-like molecules including Mcl-1," he said. "If agents that can influence regulatory T cell survival can be developed, we could see new ways to suppress autoimmune disease, by boosting regulatory T cell numbers, or to enhance beneficial immune responses, by silencing regulatory T cells."

The research was funded by the Australian National Health and Medical Research Council, the Victorian government, the European Union, the Belgian Government, and the VIB.


Story Source:

The above story is based on materials provided by Walter and Eliza Hall Institute of Medical Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wim Pierson, B้n้dicte Cauwe, Antonia Policheni, Susan M Schlenner, Dean Franckaert, Julien Berges, Stephanie Humblet-Baron, Susann Sch๖nefeldt, Marco J Herold, David Hildeman, Andreas Strasser, Philippe Bouillet, Li-Fan Lu, Patrick Matthys, Antonio A Freitas, Rita J Luther, Casey T Weaver, James Dooley, Daniel H D Gray, Adrian Liston. Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3 regulatory T cells. Nature Immunology, 2013; DOI: 10.1038/ni.2649

Cite This Page:

Walter and Eliza Hall Institute of Medical Research. "Kill-switch controls immune-suppressing cells, scientists discover." ScienceDaily. ScienceDaily, 14 July 2013. <www.sciencedaily.com/releases/2013/07/130714160604.htm>.
Walter and Eliza Hall Institute of Medical Research. (2013, July 14). Kill-switch controls immune-suppressing cells, scientists discover. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2013/07/130714160604.htm
Walter and Eliza Hall Institute of Medical Research. "Kill-switch controls immune-suppressing cells, scientists discover." ScienceDaily. www.sciencedaily.com/releases/2013/07/130714160604.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) — State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Who Could Be Burnt by WHO's E-Cigs Move?

Who Could Be Burnt by WHO's E-Cigs Move?

Reuters - Business Video Online (Aug. 28, 2014) — The World Health Organisation has called for the regulation of electronic cigarettes as both tobacco and medical products. Ciara Lee looks at the impact of the move on the tobacco industry. Video provided by Reuters
Powered by NewsLook.com
CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) — CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com
How A 'Rule Of Thumb' Could Slow Down Drinking

How A 'Rule Of Thumb' Could Slow Down Drinking

Newsy (Aug. 28, 2014) — A study suggests people who follow a "rule of thumb" when pouring wine dispense less than those who don't have a particular amount in mind. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins