Featured Research

from universities, journals, and other organizations

Move like an octopus: Underwater propulsion from a 3-D printer

Date:
July 22, 2013
Source:
Fraunhofer-Gesellschaft
Summary:
Octopods, which are also known as octopuses or squid, generally move along the ocean floor with their eight arms, they flee by swimming head-first, in line with the principles of propulsion. When the mollusk does this, water is taken into its mantle, which is then closed by contracting sphincter muscles. The water is then squirted back out at a high pressure through a funnel. The resulting propulsion pushes the octopus forward in the opposite direction. By changing the position of the funnel, the octopus can precisely steer its direction of travel. For researchers this intelligent propulsion principle served as a role model for the development of an underwater propulsion system.

Octopus. Octopods, which are also known as octopuses or squid, are considered to be the most intelligent invertebrates.
Credit: isabelle_bonaire / Fotolia

Octopods, which are also known as octopuses or squid, are considered to be the most intelligent invertebrates. In fact, they have been referred to as the "sages of the sea." They are capable of learning; they can open tin cans, and can even tell patterns apart.

Related Articles


They are also clever when it comes to protecting themselves from their enemies. While they generally move along the ocean floor with their eight arms, they flee by swimming head-first, in line with the principles of propulsion. When the mollusk does this, water is taken into its mantle, which is then closed by contracting sphincter muscles. The water is then squirted back out at a high pressure through a funnel. The resulting propulsion pushes the octopus forward in the opposite direction. By changing the position of the funnel, the octopus can precisely steer its direction of travel. For researchers at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA, this intelligent propulsion principle served as a role model for the development of an underwater propulsion system.

"Squids use this type of movement mainly if they are trying to flee suddenly and quickly. The system is simple, but effective. When they use it, the octopods can speed up considerably over short distances," says Andreas Fischer, an engineer at IPA in Stuttgart. "We have integrated this propulsion principle into our underwater actuators: four elastomer balls with mechanical inner workings create propulsion by pumping water."

Water is sucked into each actuator or elastomer ball through an opening ; a recirculation valve prevents reflux. A hydraulic piston contracts the integrated cable structure like a muscle. In this way, it pushes the water out of the 20 x 6 cm ball. In turn, a motor pump moves the hydraulic piston. "Our underwater actuator is well-suited for maneuvering small boats. It can also be used as a floating aid for water sport devices such as jet skis, surf boards, or scooters that pull divers into deep water. In contrast to ship propellers, it is quiet, and fish cannot get caught in it," the researcher says in explaining the benefits of the system, which has just successfully past initial laboratory tests.

Industrial robots shorten production processes

The best part: the experts can produce the system in a single step with a 3D printer. In order to produce its complex geometry amorphously with soft plastic, the researchers opted for the fused deposition modeling generative production process, or FDM for short. With this approach, the plastics to be processed are heated and liquefied in an extrusion head , and are transformed into a thin filament in the pressure nozzle. This filament is then applied in layers, from bottom to top, to produce a complex 3D component. Fischer and his team used thermoplastics such as polyurethane because of their flexibility. The final product of this process is an underwater propulsion system that can stand extreme levels of pressure without breaking. Even in situations of very high stress, it always returns to its original shape.

Thanks to FDM, the researchers can also scale the actuators. In fact, components of up to two meters in size can be printed three-dimensionally. This can be done with the help of an industrial robot that has been equipped with three extrusion heads. "At the moment, the maximum construction volume of FDM facilities is 91.4 x 61 x 91.4 cm, whereby no more than ten different thermoplastics can be processed in layers. With robot-based FDM, much larger components can be produced, with different combinations of material. By integrating continuous filament into thermoplastics, for example, we can manufacture carbon fiber-reinforced components quickly and at a low cost," says the scientist in explaining the advantages of the melting process. Moreover, the production process can be made much shorter by using several robots that work on a single component simultaneously.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Move like an octopus: Underwater propulsion from a 3-D printer." ScienceDaily. ScienceDaily, 22 July 2013. <www.sciencedaily.com/releases/2013/07/130722105552.htm>.
Fraunhofer-Gesellschaft. (2013, July 22). Move like an octopus: Underwater propulsion from a 3-D printer. ScienceDaily. Retrieved March 27, 2015 from www.sciencedaily.com/releases/2013/07/130722105552.htm
Fraunhofer-Gesellschaft. "Move like an octopus: Underwater propulsion from a 3-D printer." ScienceDaily. www.sciencedaily.com/releases/2013/07/130722105552.htm (accessed March 27, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, March 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Amazon Complains U.S. Is Too Slow To Regulate Drones

Amazon Complains U.S. Is Too Slow To Regulate Drones

Newsy (Mar. 25, 2015) Days after getting approval to test certain commercial drones, Amazon says the Federal Aviation Administration is dragging its feet on the matter. Video provided by Newsy
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
China Wants to Export Its Steel Problem

China Wants to Export Its Steel Problem

Reuters - Business Video Online (Mar. 25, 2015) China is facing a crisis with a glut of steel and growing public anger over the pollution created by production. In a move to solve the problem, some steel mills are looking to relocate overseas. Jane Lanhee Lee reports. Video provided by Reuters
Powered by NewsLook.com
Robot Stays on Its Feet Despite Punishment

Robot Stays on Its Feet Despite Punishment

Reuters - Innovations Video Online (Mar. 24, 2015) Robotic engineers have modelled a two-legged robot to be fast and agile like an ostrich. The design is more efficient and stable than bipedal robots built to move like humans, according to its creators who abuse the poor machine to test its skills. Ben Gruber has more. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins