Featured Research

from universities, journals, and other organizations

Sequestration and fuel reserves: Storing carbon dioxide to release liquid fuels

Date:
July 30, 2013
Source:
Inderscience Publishers
Summary:
A technique for trapping the greenhouse gas carbon dioxide deep underground could at the same be used to release the last fraction of natural gas liquids from ailing reservoirs, thus offsetting some of the environmental impact of burning fossil fuels, experts say.

A technique for trapping the greenhouse gas carbon dioxide deep underground could at the same be used to release the last fraction of natural gas liquids from ailing reservoirs, thus offsetting some of the environmental impact of burning fossil fuels. So says a paper to be published in the peer-reviewed International Journal of Oil, Gas and Coal Technology.

While so-called "fracking" as a method for extracting previously untapped fossil fuel reserves has been in the headlines recently, there are alternatives to obtaining the remaining quantities of hydrocarbons from gas/condensate reservoirs, according to Kashy Aminian of West Virginia University in Morgantown, USA, and colleagues there and at Kuwait University in Safat.

Earlier experiments suggests that using carbon dioxide instead of nitrogen or methane to blast out the hydrocarbon stock from depleted reservoirs might be highly effective and have the added benefit of trapping, or sequestering the carbon dioxide underground. Aminian and colleagues have calculated the economic benefits associated with the enhanced liquid recovery and demonstrated that the approach is technically and financially viable.

The team explains that the mixing of carbon dioxide with the condensate reservoir fluid results in a reduction of the saturation pressure, the liquid drop-out, and the compressibility factor, boosting recovery of useful hydrocarbon and allowing the carbon dioxide to be trapped within. The team found that the process works well regardless of the characteristics of the reservoir or even the rate at which the carbon dioxide is injected into the reservoir, the amount that is recovered remains just as high. Moreover, because of the compressibility of the carbon dioxide it is possible to squeeze out 1.5 to 2 times the volume of reservoir gas for the amount of carbon dioxide pumped in, there is also then the possibility of pumping in an additional 15% once as much reservoir liquid as can be retrieved has been extracted.


Story Source:

The above story is based on materials provided by Inderscience Publishers. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kashy Aminian et al. Enhanced liquid recovery by carbon dioxide sequestration in gas/condensate reservoirs. Int. J. Oil, Gas and Coal Technology, 2013, 6, 485-506

Cite This Page:

Inderscience Publishers. "Sequestration and fuel reserves: Storing carbon dioxide to release liquid fuels." ScienceDaily. ScienceDaily, 30 July 2013. <www.sciencedaily.com/releases/2013/07/130730163140.htm>.
Inderscience Publishers. (2013, July 30). Sequestration and fuel reserves: Storing carbon dioxide to release liquid fuels. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2013/07/130730163140.htm
Inderscience Publishers. "Sequestration and fuel reserves: Storing carbon dioxide to release liquid fuels." ScienceDaily. www.sciencedaily.com/releases/2013/07/130730163140.htm (accessed September 30, 2014).

Share This



More Earth & Climate News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Balloon Descends to Bottom of Croatian Cave

Raw: Balloon Descends to Bottom of Croatian Cave

AP (Sep. 29, 2014) An Austrian balloon pilot has succeeded in taking a balloon deep underground, a feat which he believes is a world first. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Bodies Recovered from Japan Volcano Eruption

Bodies Recovered from Japan Volcano Eruption

AP (Sep. 29, 2014) Rescue crews finished recovering the remaining 27 bodies from atop Japan's Mount Ontake Monday. At least 31 people were killed Saturday in the mountain's first fatal volcanic event in modern history. (Sept. 29) Video provided by AP
Powered by NewsLook.com
Raw: Japan's Mount Ontake Erupts

Raw: Japan's Mount Ontake Erupts

AP (Sep. 27, 2014) A volcano erupted in central Japan on Saturday, sending a large plume of ash high into the sky and prompting a warning to climbers and others to avoid the area. (Sept. 27) Video provided by AP
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins