Featured Research

from universities, journals, and other organizations

Loss of MicroRNA decoy might contribute to development of soft-tissue sarcoma

Date:
August 7, 2013
Source:
Ohio State University Wexner Medical Center
Summary:
Researchers have discovered a novel mechanism responsible for the loss of a critical tumor-suppressor gene in rhabdomyosarcoma and other soft-tissue sarcomas, rare cancers that strike mainly children and often respond poorly to treatment. Their cause is largely unknown. Knowledge of the mechanism could guide the development of more effective therapies for these malignancies.

Researchers have discovered a novel mechanism responsible for the loss of a critical tumor-suppressor gene in rhabdomyosarcoma and other soft-tissue sarcomas, rare cancers that strike mainly children and often respond poorly to treatment. Their cause is largely unknown.

Related Articles


Knowledge of the mechanism could guide the development of more effective therapies for these malignancies, say researchers who led the study at The Ohio State University Comprehensive Cancer Center -- Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC -- James).

The researchers found that the tumor-suppressor gene called A20 is silenced not by mutation, as in many other cancers, but because a second molecule is lost, a small molecule called microRNA-29 (miR-29). In addition, they found that miR-29 normally protects A20 from destruction. When miR-29 is absent, A20 is degraded. Loss of A20, in turn, leads to a dramatic rise in levels of a protein called NF-kB and to tumor progression.

The findings are published in the journal Science Signaling.

"We do know that NF-kB is a tumor promoter, but we don't know why it is upregulated in many cancers," says principal investigator Denis Guttridge, PhD, professor of molecular virology, immunology and medical genetics and a member of the OSUCCC -- James Molecular Biology and Cancer Genetics Program.

"Our study indicates that it involves a regulatory circuit between NF-kB, miR-29 and the A20 tumor-suppressor gene," Guttridge says. "It also identifies NF-kB as a therapeutic target in sarcoma and A20 and miR-29 as potential biomarkers for sarcoma."

First author Mumtaz Yaseen Balkhi, PhD, notes that the findings move research a step closer toward developing miR-29 therapy against NF-kB activation in cancers. "A number of labs have tried to block NF-kB signaling using pharmacological inhibitors because of the perceived benefits for cancer treatment," Balkhi says. "We provide an alternative route, showing that microRNA can do the same job by acting as a decoy."

Study pathologist and coauthor O. Hans Iwenofu, MD, FCAP, assistant professor of pathology and member of the OSUCCC -- James Molecular Biology and Cancer Genetics Program, also sees the potential for developing novel therapies."We are excited about these findings because they open up new vistas on the role of microRNAs in sarcoma development and provide a rationale for further interrogating this circuitry as a potential target for new treatments."

Soft-tissue sarcomas -- cancers of muscle, other soft tissues and bone -- make up about 15 percent of pediatric cancer cases. In 2013, about 11,400 cases of sarcoma are expected in the United States, and about 4,400 Americans are expected to die from the malignancy.

For this study, Guttridge, Iwenofu and their colleagues used human tumor samples, cell lines and animal models. Key technical findings include:

  • miR-29 and A20 expression are abnormally low in sarcomas;
  • The A20 gene showed little evidence of mutation;
  • Restoring miR-29 levels in sarcoma cells caused A20 levels to rise;
  • miR-29 normally binds with a protein called HuR; when miR-29 is absent, HuR binds with A20, leading to the degradation of A20;
  • When miR-29 binds with HuR, it acts as a decoy and protects A20 from HuR-mediated degradation.

"The loss of the A20 tumor-suppressor gene because the microRNA decoy is absent may represent another mechanism to explain why NF-kB is constitutively active in sarcoma cancers," Guttridge says.

The significant role played by the RNA binding protein HuR surprised the researchers. "This protein in tumors can destabilize the A20 tumor suppressor," Balkhi says. "The rescue of destabilized tumor suppressors that are unaffected by mutations is an attractive possibility in cancer research, and our results provide an important breakthrough in that direction."

Funding from the NIH/National Cancer Institute (grants CA163995-01, CA143082) and a Pelotonia fellowship supported this research.


Story Source:

The above story is based on materials provided by Ohio State University Wexner Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Yaseen Balkhi, O. H. Iwenofu, N. Bakkar, K. J. Ladner, D. S. Chandler, P. J. Houghton, C. A. London, W. Kraybill, D. Perrotti, C. M. Croce, C. Keller, D. C. Guttridge. miR-29 Acts as a Decoy in Sarcomas to Protect the Tumor Suppressor A20 mRNA from Degradation by HuR. Science Signaling, 2013; 6 (286): ra63 DOI: 10.1126/scisignal.2004177

Cite This Page:

Ohio State University Wexner Medical Center. "Loss of MicroRNA decoy might contribute to development of soft-tissue sarcoma." ScienceDaily. ScienceDaily, 7 August 2013. <www.sciencedaily.com/releases/2013/08/130807130054.htm>.
Ohio State University Wexner Medical Center. (2013, August 7). Loss of MicroRNA decoy might contribute to development of soft-tissue sarcoma. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2013/08/130807130054.htm
Ohio State University Wexner Medical Center. "Loss of MicroRNA decoy might contribute to development of soft-tissue sarcoma." ScienceDaily. www.sciencedaily.com/releases/2013/08/130807130054.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins