Featured Research

from universities, journals, and other organizations

Enhancer RNAs may open new avenues for gene therapy

Date:
August 13, 2013
Source:
University of Eastern Finland
Summary:
A study investigating the function of the recently discovered enhancer RNA molecules may open new avenues for gene therapy. According to the study researchers, altering the production and function of these molecules could affect the expression of genes and, in consequence, possibly also the progression of various diseases.

This image relating to the study was featured on the cover of the August 8 issue of Molecular Cell. The image portrays a summery Finnish landscape in which the forest has been replaced by polymerase transcription signal (global run on sequencing = GRO-Seq). Inflammation response induces the transcription of the Irg1 gene and enhancer RNAs, causing the emergence of novel enhancer regions and a novel enhancer landscape within a cell.
Credit: Minna U. Kaikkonen

A study investigating the function of the recently discovered enhancer RNA molecules may open new avenues for gene therapy. According to the study researchers, altering the production and function of these molecules could affect the expression of genes and, in consequence, possibly also the progression of various diseases.

Published in  Molecular Cell on 8 August, the study was carried out in collaboration between the University of California, San Diego and the University of Eastern Finland.

Besides promoters located in the beginning of genes, gene expression is also regulated by enhancers which may be located as far as thousands of base pairs away from the gene they regulate. Enhancers have been shown to be responsible for cell-specific gene regulation. Previously, it was thought that the number of enhancer sequences in a differentiated cell is static; however, recent findings are starting to disprove the idea. In 2010, it was discovered that non-coding RNA molecules were being produced from the enhancer regions. The first observations relating to the biological function of these enhancer RNAs, or eRNAs, were published earlier this year. However, no study to date has addressed the question of whether enhancer transcription is of functional importance.

In the study researchers used genome-wide approaches to demonstrate that inflammation response causes the emergence of novel enhancers in primary macrophage cells. For the first time ever, the study used this formation of novel enhancer regions to describe the selection of enhancers and the progression of the activation from transcription factor binding to histone acetylation and eRNA transcription, finally leading to the mono- and dimethylation of histone H3 lysine 4 (H3K4me1/2). The H3K4me1 and H3K4me2 histone modifications are the very markers generally used to identify the location of enhancer regions on DNA. This type of histone methylation enables the function of these regions as enhancer sequences, i.e. as marks that can be identified by specific proteins which boost gene transcription.

The study showed that the direction and extent of eRNA transcription and H3K4me1/2 regions show strong correlation and that the inhibition of eRNA transcription with polymerase inhibitors inhibited histone methylation and thus also the emergence of novel enhancer sequences. Furthermore, the study showed that histone methyltransferases Mll1, Mll2/4 and Mll3 play a key role in de novo H3K4 methylation.

The results show that enhancer transcription causes long-term epigenetic changes in cells. Furthermore, besides offering valuable insight into the function of this novel RNA type, the researchers also believe that the findings will open new avenues for novel treatments in which cell-specific enhancer sequences can be targeted to alter gene expression. In June, this same group of researchers published a study in Nature, reporting for the first time reduction in target gene expression using eRNA knockdown in experimental animals.

Postdoctoral Researcher Minna U. Kaikkonen at A.I. Virtanen Institute for Molecular Sciences at the University of Eastern Finland was one of the two lead authors of the current study, carried out under Professor Christopher Glass. Dr Kaikkonen completed her post doc study in Professor Glass' research group at the University of California, San Diego in 2009-2012. Besides Dr Kaikkonen, the UEF contributors to the earlier study from June also include Postdoctoral Researcher Hanna P. Lesch.

The main funders of the study are Fondation Leducq, Sigrid Jusélius Foundation, the Academy of Finland, ASLA Fulbright, the Finnish Foundation for Cardiovascular Research, the Finnish Cultural Foundation (North Savo Regional Fund), Orion-Farmos Research Foundation and the US National Institutes of Health grants DK091183, CA17390, and DK063491.


Story Source:

The above story is based on materials provided by University of Eastern Finland. Note: Materials may be edited for content and length.


Journal References:

  1. Minna U. Kaikkonen, Nathanael J. Spann, Sven Heinz, Casey E. Romanoski, Karmel A. Allison, Joshua D. Stender, Hyun B. Chun, David F. Tough, Rab K. Prinjha, Christopher Benner, Christopher K. Glass. Remodeling of the Enhancer Landscape during Macrophage Activation Is Coupled to Enhancer Transcription. Molecular Cell, 2013; 51 (3): 310 DOI: 10.1016/j.molcel.2013.07.010
  2. Michael T. Y. Lam, Han Cho, Hanna P. Lesch, David Gosselin, Sven Heinz, Yumiko Tanaka-Oishi, Christopher Benner, Minna U. Kaikkonen, Aneeza S. Kim, Mika Kosaka, Cindy Y. Lee, Andy Watt, Tamar R. Grossman, Michael G. Rosenfeld, Ronald M. Evans, Christopher K. Glass. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature, 2013; 498 (7455): 511 DOI: 10.1038/nature12209

Cite This Page:

University of Eastern Finland. "Enhancer RNAs may open new avenues for gene therapy." ScienceDaily. ScienceDaily, 13 August 2013. <www.sciencedaily.com/releases/2013/08/130813101003.htm>.
University of Eastern Finland. (2013, August 13). Enhancer RNAs may open new avenues for gene therapy. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2013/08/130813101003.htm
University of Eastern Finland. "Enhancer RNAs may open new avenues for gene therapy." ScienceDaily. www.sciencedaily.com/releases/2013/08/130813101003.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) — An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) — The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) — The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) — Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins