Featured Research

from universities, journals, and other organizations

Extreme weather events fuel climate change

Date:
August 14, 2013
Source:
Max Planck Institute for Biogeochemistry
Summary:
In 2003, Central and Southern Europe sweltered in a heatwave that set alarm bells ringing for researchers. It was one of the first large-scale extreme weather events which scientists were able to use to document in detail how heat and drought affected the carbon cycle (the exchange of carbon dioxide between the terrestrial ecosystems and the atmosphere). Measurements indicated that the extreme weather events had a much greater impact on the carbon balance than had previously been assumed. It is possible that droughts, heat waves and storms weaken the buffer effect exerted by terrestrial ecosystems on the climate system. In the past 50 years, plants and the soil have absorbed up to 30% of the carbon dioxide that humans have set free, primarily from fossil fuels.

One extreme after another: Long periods of drought, such as that shown here in Greece, have the effect that the ecosystem absorbs considerably less carbon than under normal climate conditions.
Credit: Marcel van Oijen

In 2003, Central and Southern Europe sweltered in a heatwave that set alarm bells ringing for researchers. It was one of the first large-scale extreme weather events which scientists were able to use to document in detail how heat and drought affected the carbon cycle (the exchange of carbon dioxide between the terrestrial ecosystems and the atmosphere). Measurements indicated that the extreme weather events had a much greater impact on the carbon balance than had previously been assumed. It is possible that droughts, heat waves and storms weaken the buffer effect exerted by terrestrial ecosystems on the climate system. In the past 50 years, plants and the soil have absorbed up to 30% of the carbon dioxide that humans have set free, primarily from fossil fuels.

The indications that the part played by extreme weather events in the carbon balance had been underestimated prompted scientists from eight countries to launch the CARBO-Extreme Project. For the first time, the consequences of various extreme climate events on forests, bogs, grass landscapes and arable areas throughout the world underwent systematic scrutiny.

Satellites and recording stations document extreme events

The researchers working with Markus Reichstein took different approaches to their study from the ecosystem perspective. Satellite images from 1982 to 2011 revealed how much light plants in an area absorb so that they can perform photosynthesis. From this, they were able to determine how much biomass the ecosystem in question accumulates during or after an extreme weather event. The researchers also used data from a global network of 500 recording stations, some in operation for more than 15 years, which record carbon dioxide concentrations and air currents in the atmosphere a few meters above ground or in forest canopies. Calculations from these values indicate how much carbon an ecosystem absorbs and releases in the form of carbon dioxide.

The team then fed the various readings into complex computer models to calculate the global effect of extreme weather on the carbon balance. The models showed that the effect is indeed extreme: on average, vegetation absorbs 11 billion fewer tonnes of carbon dioxide than it would in a climate that does not experience extremes. "That is roughly equivalent to the amount of carbon sequestered in terrestrial environments every year," says Markus Reichstein. "It is therefore by no means negligible."

Droughts hit vegetation particularly hard

Droughts, heat waves, storms and heavy rain have not yet become more frequent and pronounced as a consequence of anthropogenic climate change. However, many climate researchers expect that they will in the future. This would mean more carbon dioxide in the atmosphere as a result of extreme weather conditions.

Periods of extreme drought in particular reduce the amount of carbon absorbed by forests, meadows and agricultural land significantly. "We have found that it is not extremes of heat that cause the most problems for the carbon balance, but drought," explains Markus Reichstein. He and his colleagues expect extreme weather events to have particularly pronounced, varied and long-term effects on forest ecosystems. Drought can not only cause immediate damage to trees; it can also make them less resistant to pests and fire. It is also the case that a forest recovers much more slowly from fire or storm damage than other ecosystems do; indeed, grasslands are completely unaffected by high winds.

The researchers also discovered that serious failures to absorb carbonare distributed according to a so-called power law, like avalanches, earthquakes and other catastrophic events. This means that a few major events dominate the global overall effect, while the more frequent smaller events occurring throughout the world play a much less significant part.

Weather extremes are still very rare, but more research is needed

The researchers are planning more studies to improve their understanding of the consequences of extreme events. For example, they want to investigate the way the different ecosystems respond in laboratory and field experiments. "These experiments have already been carried out, but mostly they only look at extreme events which occur once in a 100 years," explains Michael Bahn, a project partner from the University of Innsbruck. "We should also take account of events which so far have only happened once in 1,000 or even 10,000 years, because they are likely to become much more frequent towards the end of this century." The researchers are also suggesting that, in a drought or a storm, satellites be directed at the area in question as quickly as possible so that the immediate effect can be recorded along with the long-term impact.

The investigations of the current study, however, show that the consequences of weather extremes can be far-reaching. "As extreme climate events reduce the amount of carbon that the terrestrial ecosystems absorb and the carbon dioxide in the atmosphere therefore continues to increase, more extreme weather could result," explains Markus Reichstein. "It would be a self-reinforcing effect."


Story Source:

The above story is based on materials provided by Max Planck Institute for Biogeochemistry. Note: Materials may be edited for content and length.


Journal Reference:

  1. Markus Reichstein, Michael Bahn, Philippe Ciais, Dorothea Frank, Miguel D. Mahecha, Sonia I. Seneviratne, Jakob Zscheischler, Christian Beer, Nina Buchmann, David C. Frank, Dario Papale, Anja Rammig, Pete Smith, Kirsten Thonicke, Marijn van der Velde, Sara Vicca, Ariane Walz, Martin Wattenbach. Climate extremes and the carbon cycle. Nature, 2013; 500 (7462): 287 DOI: 10.1038/nature12350

Cite This Page:

Max Planck Institute for Biogeochemistry. "Extreme weather events fuel climate change." ScienceDaily. ScienceDaily, 14 August 2013. <www.sciencedaily.com/releases/2013/08/130814132316.htm>.
Max Planck Institute for Biogeochemistry. (2013, August 14). Extreme weather events fuel climate change. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2013/08/130814132316.htm
Max Planck Institute for Biogeochemistry. "Extreme weather events fuel climate change." ScienceDaily. www.sciencedaily.com/releases/2013/08/130814132316.htm (accessed September 16, 2014).

Share This



More Earth & Climate News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins